Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science

THEORETICAL STUDIES OF THE HEATing SYSTEM IN THE VEHICLE COMPARTMENT DURing PASSENGER TRANSPORTATION TAKing INTO ACCOUNT BREATHing UNDER CONDITIONS OF LOW TEMPERATURES


DOI: 10.5937/jaes18-27264 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 18 article 699 pages: 346 - 354

Denis Sergeevich Aleshkov*
Siberian State Automobile and Highway University (SibADI), Department "Technosphere and Environmental Safety", Omsk, Russian Federation

Mikhail Viktorovich Banket
Siberian State Automobile and Highway University (SibADI), Department "Operation and Repair of Automobiles", Omsk, Russian Federation

Mikhail Vladimirovich Sukovin
Siberian State Automobile and Highway University (SibADI), Department "Technosphere and Environmental Safety", Omsk, Russian Federation

Irina Vladimirovna Pogulyaeva
Siberian State Automobile and Highway University (SibADI), Department "Logistics", Omsk, Russian Federation

Svetlana Vladimirovna Yanchij
Omsk State Technical University (OmSTU) FSBEI of Higher Education, Department "Industrial Ecology and Safety", Omsk, Russian Federation

This paper presents the results of theoretical computer-aided research of the microclimate parameters in the vehicle passenger compartment during operation of one of the widely used schemes of heating system in the passenger compartment, taking into account the breathing of passengers. Theoretical researches of the heating system operation in the passenger compartment taking into account passenger breathing have been conducted. Distribution of microclimate parameters in the passenger compartment cross-section, in the case of using a heating system having one compartment heater, with and without taking into account the breathing of passengers, has been obtained. The assessment of the effect of passengers' breathing on the microclimate parameters in the passenger compartment has been carried out. The outcomes of this research may be of interest to specialists involved in the design and ergonomics of wheeled vehicles and labor protection.

View article

1. Berestneva, O. G., Zharkova, O. S., Shevelev, G. E., & Urazaev, A. M. (2015). Methods for analysis of adaptation processes in on-off work pattern of oilmen's labor. Modern Problems of Science and Education, 4, 212–218.

2. Cui, W., Cao, G., Park, J., Ouyang, Q., & Zhu, Y. (2013). Infl uence of indoor air temperature on human thermal comfort, motivation and performance. Building and Environment, 68, 114-122. doi: 10.1016/j. buildenv.2013.06.012

3. Croitoru, C., et al. (2011). Numerical and experimental modeling of airfl ow and heat transfer of a human body. Roomvent 2011.

4. Nielsen, P. (2007). Analysis and Design of Room Air Distribution Systems. HVAC&R Research, 13, 987- 997. doi: 10.1080/10789669.2007.10391466

5. Yang, C., Yang, X., & Zhao, B. (2015). The ventilation needed to control thermal plume and particle dispersion from manikins in a unidirectional ventilated protective isolation room. Building Simulation, 8, 551–565. doi: 10.1007/s12273-014-0227-6

6. Schmeling, D., & Bosbach, J. (2017). On the infl uence of sensible heat release on displacement ventilation in a train compartment. Building and Environment, 125, 248-260. doi: 10.1016/j.buildenv.2017.08.039

7. Aliahmadipour, M., & Abdolzadeh, M., & Lari, K. (2017). Air fl ow simulation of HVAC system in compartment of a passenger coach. Applied Thermal Engineering, 123, 973-990. doi: 10.1016/j.applthermaleng. 2017.05.086

8. Bosbach, J., Lange, S., Dehne, T., Lauenroth, G., Hesselbach, F., & Allzeit, M. (2013). Alternative Ventilation Concepts for Aircraft Cabins. CEAS Aeronautical Journal, 4, 301–313. doi: 10.1007/s13272-013- 0074-z

9. Canbolat, A., Türkan, B., Etemoglu, A., & Can, M. (2016). Numerical investigation into thermal comfort conditions in a midibus. The Journal of MacroTrends in Applied Science, 4, 13-23.

10. Ivanescu, M., Neacsu, C. A., & Tabacu, I. (2010). Studies of the Thermal Comfort Inside of the Passenger Compartment Using the Numerical Simulation. International Congress Motor Vehicles & Motors 2010.

11. Mao, Y., & Wang, J., & Li, J.-M. (2018). Experimental and numerical study of air fl ow and temperature variations in an electric vehicle cabin during cooling and heating. Applied Thermal Engineering, 137, 356- 367. doi: 10.1016/j.applthermaleng.2018.03.099

12. Zhang, H., Dai, L., Xu, G., Li, Y., Chen, W., & Tao, W.-Q. (2009). Studies of air-fl ow and temperature fi elds inside a passenger compartment for improving thermal comfort and saving energy. Part I: Test/ numerical model and validation. Applied Thermal Engineering, 29, 2022-2027. doi: 0.1016/j.applthermaleng. 2008.10.005

13. Schmeling, D., & Bosbach, J. (2019). Infl uence of shape and heat release of thermal passenger manikins on the performance of displacement ventilation in a train compartment. Indoor and Built Environment. doi: 10.1177/1420326X19856673 352 

14. Dong, Z., Zhou, B., Li, F., Wang, Y., Lin, X., & Wu, X. (2017). Investigation of Thermal Plume around a Simulated Standing Operator in an Operating Room. Procedia Engineering, 205, 1940-1945. doi: 10.1016/j.proeng.2017.10.053

15. Ünal, Ş. (2017). An Experimental Study on a Bus Air Conditioner to Determine its Conformity to Design and Comfort Conditions. Journal of Thermal Engineering, 3, 1089-1101. doi: 10.18186/thermal. 277288

16. Zhou, X., Lai, D., & Chen, Q. (2018). Experimental investigation of thermal comfort in a passenger car under driving conditions. Building and Environment, 149, 109-119. doi: 10.1016/j.buildenv.2018.12.022

17. Paul Alexandru, D., Nastase, I., Bode, F., Croitoru, C., Angel, D., & Meslem, A. (2019). Evaluation of the thermal comfort for its occupants inside a vehicle during summer. IOP Conference Series: Materials Science and Engineering, 595, 012027. doi: 10.1088/1757-899X/595/1/012027

18. Khaiwal, R., Agarwal, N., & Mor, S. (2020). Assessment of thermal comfort parameters in various car models and mitigation strategies for extreme heathealth risks in the tropical climate. Journal of Environmental Management, 267, 110655. doi: 10.1016/j. jenvman.2020.110655

19. Qi, C., Helian, Y., Liu, J., & Zhang, L. (2017). Experiment Study on the Thermal Comfort inside a Car Passenger Compartment. Procedia Engineering, 205, 3607-3614. doi: 10.1016/j.proeng.2017.10.211

20. He, Y., Yang, J., Ling, J., Du, Y., & Zhang, Z. (2020). Predictive modeling for overall thermal sensation of vehicle occupants based on local thermal sensation when warming up. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 234(8), 2127–2134. doi: 10.1177/0954407020902564

21. Lange, P., Schmeling, D., Hoermann, H., & Volkmann, A. (2019). Comparison of local equivalent temperatures and subjective thermal comfort ratings with regard to passenger comfort in a train compartment. IOP Conference Series: Materials Science and Engineering, 609, 032042. doi: 10.1088/1757- 899X/609/3/032042

22. Foda, E., Almesri, I., Awbi, H. B., & Sirén, K. (2011). Models of human thermoregulation and the prediction of local and overall thermal sensations. Building and Environment, 46, 2023-2032. doi: 10.1016/j. buildenv.2011.04.010

23. Huizenga, C., Hui, Z., & Arens, E. (2001). A model of human physiology and comfort for assessing complex thermal environments. Building and Environment, 36, 691–699.

24. Foda, E., & Sirén, K. (2011). A new approach using the pierce two-node model for different body parts. International Journal of Biometeorology, 55, 519–532.

25. Alahmer, A., Abdelhamid, M., & Omar, M. (2012). Design for thermal sensation and comfort states in vehicles cabins. Applied Thermal Engineering, 36, 126– 140. doi: 10.1016/j.applthermaleng.2011.11.056

26. Paul Alexandru, D., Vartires, A., & Angel, D. (2016). An Overview of Current Methods for Thermal Comfort Assessment in Vehicle Cabin. Energy Procedia, 85, 162-169. doi: 10.1016/j.egypro.2015.12.322

27. Yang, C.-J., Yang, T.-C., Chen, P.-T., & Huang, K.D. (2019). An Innovative Design of Regional Air Conditioning to Increase Automobile Cabin Energy Effi - ciency. Energies, 12, 2352.

28. Croitoru, C., Nastase, I., Bode, F., Meslem, A., & Dogeanu, A. (2015). Thermal comfort models for indoor spaces and vehicles—Current capabilities and future perspectives. Renewable and Sustainable Energy Reviews, 44, 304-318.

29. Paul Alexandru, D., Bode, F., Nastase, I., & Meslem, A. (2018). CFD simulation of a cabin thermal environment with and without human body – thermal comfort evaluation. E3S Web of Conferences, 32, 01018. doi: 10.1051/e3sconf/20183201018

30. Kristanto, D., & Leephakpreeda, T. (2017). Sensitivity analysis of energy conversion for effective energy consumption, thermal comfort, and air quality within car cabin. Energy Procedia, 138, 552–557.

31. Khatoon, S., & Kim, M.H. (2020). Thermal Comfort in the Passenger Compartment Using a 3-D Numerical Analysis and Comparison with Fanger’s Comfort Models. Energies, 13, 690. doi: 10.3390/ en13030690

32. Marshall, G.J., Mahony, C.P., Rhodes, M.J., Daniewicz, S.R., Thompson, S.M. (2019). Thermal Management of Vehicle Cabins, External Surfaces, and Onboard Electronics: An Overview. Engineering, 5(5), 954-969.

33. Oh, M., Ahn, J., Kim, D., Jang, D., & Kim, Y. (2014). Thermal comfort and energy saving in a vehicle compartment using a localized air-conditioning system. Applied Energy, 133, 14–21. doi: 10.1016/j.apenergy. 2014.07.089

34. Li, J., Cao, X., Liu, J., Mohanarangam, K., & Yang, W. (2018). PIV measurement of human thermal convection fl ow in a simplifi ed vehicle cabin. Building and Environment, 144, 305-315. doi: 10.1016/j. buildenv.2018.08.031

35. Chen, Q. (1995). Comparison of different k-ε models for indoor air fl ow computations. Numerical Heat Transfer, Part B: Fundamentals, 28, 353–369.

36. Chen, Q., Zhang, Z., & Zuo, W. (2007). Computational fl uid dynamics for indoor environment modeling: Past, present, and future. IAQVEC 2007 Proceedings of the 6th International Conference on Indoor Air Quality, Ventilation and Energy Conservation in Buildings: Sustainable Built Environment, 1-9. 

37. Ansys. (2012). ANSYS/FLUENT User’s Manual. Release Version 14.5. https://www.ansys.com

38. Warey, A., Kaushik, S., Khalighi, B., Cruse, M., & Venkatesan, G. (2020). Data-driven prediction of vehicle cabin thermal comfort: using machine learning and high-fi delity simulation results. International Journal of Heat and Mass Transfer, 148, 119083.

39. Simion, M., Socaciu, L., & Unguresan, P. (2016). Factors which infl uence the thermal comfort inside of vehicles. Energy Procedia, 85, 472–480.

40. Almeida, M., Paula Xavier, A., Michaloski, A., & Luiz Soares, A. (2020). Thermal Comfort in Bus Cabins: A Review of Parameters and Numerical Investigation. In: Arezes P., Santos Baptista, J., Barroso, M. P., Carneiro P., Cordeiro, P., Costa, N., Melo, R.B., Sérgio Miguel, A., & Perestrelo, G. (eds.) Occupational and Environmental Safety and Health II. Studies in Systems, Decision and Control, vol. 277. Springer, Cham, 499-506. doi: 10.1007/978-3-030-41486-354

41. Jung, H. (2013). Modeling CO2 Concentrations in Vehicle Cabin. SAE 2013 World Congress & Exhibition. doi: 10.4271/2013-01-1497

42. Aleshkov, D.S., & Bedrina, E.A. (2015). Physical and biological impact factors on the formation of small groups. Proceedings of the International Scientifi c and Practical Conference “Science of the XXI Century: The Experience of the Past – a Look into the Future”, 456–460.

43. Sun, X., He, J., & Yang, X. (2017). Human breath as a source of VOCs in the built environment, Part I: A method for sampling and detection species. Building and Environment, 125, 565-573. doi: 10.1016/j. buildenv.2017.06.038

44. Bivolarova, M., Kierat, W., Zavrl, E., Zbigniew, P., & Melikov, A. (2017). Effect of airfl ow interaction in the breathing zone on exposure to bio-effl uents. Building and Environment, 125, 216-226. doi: 10.1016/j. buildenv.2017.08.043

45. Vianello, A., Jensen, R., Liu, L., & Vollertsen, J. (2019). Simulating human exposure to indoor airborne microplastics using a Breathing Thermal Manikin. Scientifi c Reports, 9, 8670. doi: 10.1038/ s41598-019-45054-w

46. Marshall, G.J., Mahony, C.P., Rhodes, M.J., Daniewicz, S.R., Tsolas, N., & Thompson, S.M. (2019). Thermal Management of Vehicle Cabins, External Surfaces, and Onboard Electronics: An Overview. Engineering, 5(5), 954-969.

47. Trusov, P.V., Zaitseva, N.V., Zinker, M.Yu., & Babushkina, A.V. (2018). Simulation of the dusty air flow in the respiratory tract. Russian Journal of Biomechanics, 22(3), 301-314.

48. Rim, D., & Novoselac, A. (2009). Transport of particulate and gaseous pollutants in the vicinity of a human body. Building and Environment, 44, 1840- 1849. doi: 10.1016/j.buildenv.2008.12.009

49. Potekhina, Y.P., & Golovanova, M.V. (2010). Causes of changes in the body's local temperature. Medical Almanac, 2(11), 297–298.

50. Benderskiy, B.Ya., & Petrov, R.A. (2017). Investigation of the spatial processes of the bus passenger compartment heating. Truck, 6, 3–8.