Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science

AN EXPERIMENTAL INVESTIGATION OF THE EFFECT OF NATURAL FIBER TREATMENT AND MARINE ENVIRONMENT ON CANNABIS SATIVA/EPOXY LAMINATES


DOI: 10.5937/jaes0-30277 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 19 article 859 pages: 840-846

K. N. Chethan
Manipal Academy of Higher Education, Manipal Institute of Technology, Department of Aeronautical and Automobile Engineering, Karnataka, India

Hegde Sharun
Manipal Academy of Higher Education, Manipal Institute of Technology, Department of Aeronautical and Automobile Engineering, Karnataka, India

Rajesh Kumar
Swami Vivekananada Subharti University, Meerut, India

N. H. Padmaraj*
Manipal Academy of Higher Education, Manipal Institute of Technology, Department of Aeronautical and Automobile Engineering, Karnataka, India

View article

The authors thank the Department of Aeronautical and Automobile Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal for providing the composite laboratory to conduct the experiments.

1. Kiureghian, A.D., Ditlevsen, O. (2009). Aleatory or epistemic? Does it matter?. Structural Safety, vol. 15, no.2, 105-112. DOI: 10.1016/j.strusafe.2008.06.020

2. Mallick PK. (2007). Fibre-reinforced composites materials, manufacturing and design; CRC Press, New York, doi:10.1016/0010-4361(89)90651-4.

3. Mohammed L; Ansari MNM; Pua G; Jawaid M; Islam MS. (2015). A Review on Natural Fiber Reinforced Polymer Composite and Its Applications. International Journal of Polymer Science; doi:10.1155/2015/243947.

4. Ticoalu A; Aravinthan T; Cardona F.(2010). A review of current development in natural fiber composites for structural and infrastructure applications; Southern Region Engineering Conference.

5. May-Pat A; Valadez-González A; Herrera-Franco PJ. (2010). Effect of fiber surface treatments on the essential work of fracture of HDPE-continuous henequen fiber-reinforced composites. Polymer Testing; Vol 32; No 6; doi:10.1016/j.polymertesting.2013.06.006.

6. Padmaraj NH, Keni LG, Chetan KN, Shetty M. (2018). Mechanical Characterization of Areca husk-Coir fiber reinforced hybrid Composites. Materials Today Proceedings ;Vol 5; No 1; 1292–7. doi:10.1016/j.matpr.2017.11.214.

7. Shalwan A, Yousif BF. (2013). In State of Art : Mechanical and tribological behaviour of polymeric composites based on natural fibres. Materials & Design; Vol 48:14–24. doi:10.1016/j.matdes.2012.07.014.

8. Awwad E, Mabsout M, Hamad B, Talal M, Khatib H.(2020). Studies on fiber-reinforced concrete using industrial hemp fibers. Construction and Building Materials; Vol 35; 710–717. doi:10.1016/j.conbuildmat.2012.04.119.

9. Huaran H, Hao L, Guanghui D, Fei Y, Gang D, Yang Y. (2019). Fiber and seed type of hemp ( Cannabis sativa L .) responded differently to salt-alkali stress in seedling growth and physiological indices. Industrial Crops and Products; Vol 129; 624–30. doi:10.1016/j.indcrop.2018.12.028.

10. Gohil P, Patel K, Chaudhary V. (2019). Natural fiber-reinforced polymer composites: a comprehensive study on machining characteristics of hemp fiber-reinforced composites. Biomass, Biopolymer- Based materials and Bio energy; doi:10.1016/B978-0-08-102426-3.00002-3.

11. Faruk O, Bledzki AK, Fink HP, Sain M. (2012). Biocomposites reinforced with natural fibers: 2000-2010. Progress in Polymer Science; Vol 37; No 11; doi:10.1016/j.progpolymsci.2012.04.003.

12. Ray SS, Bousmina M. (2005). Biodegradable polymers and their layered silicate nanocomposites : In greening the 21st century materials world; Progress in Materials Science; Vol 50:962–1079. doi:10.1016/j.pmatsci.2005.05.002.

13. Hegde S, Satish Shenoy B, Chethan KN. (2019). Review on carbon fiber reinforced polymer (CFRP) and their mechanical performance. Materials Today Proceedings; Vol 19; 658–62. doi:10.1016/j.matpr.2019.07.749.

14. Ren B, Mizue T, Goda K, Noda J. (2012). Effects of fluctuation of fibre orientation on tensile properties of flax sliver-reinforced green composites. Composite Structures. Vol 94; No 12; doi:10.1016/j.compstruct.2012.06.002.

15. Pan Y, Zhong Z. (2015). A micromechanical model for the mechanical degradation of natural fiber reinforced composites induced by moisture absorption. Mechanics of Materials. Vol 85. doi:10.1016/j.mechmat.2015.02.001.

16. Jayamani E, Hamdan S, Rahman R, Khusairy M. (2014). Investigation of Fiber Surface Treatment on Mechanical , Acoustical and Thermal Properties of Betelnut Fiber Polyester Composites. Procedia Engineering; Vol 97:545–54. doi:10.1016/j.proeng.2014.12.282.

17. Boopathi L, Sampath PS, Mylsamy K. (2012). Investigation of physical, chemical and mechanical properties of raw and alkali treated Borassus fruit fiber. Composites Part B Engineering. Vol 43; No 8; doi:10.1016/j.compositesb.2012.05.002.

18. Ramesh M, Sri Ananda Atreya T, Aswin US, Eashwar H, Deepa C. (2014). Processing and mechanical property evaluation of banana fiber reinforced polymer composites. Procedia Engineering. Vol 97. doi:10.1016/j.proeng.2014.12.284.

19. Shahzad A. Hemp fiber and its composites - A review. (2012). Journal of Composite Materials; Vol 46; No 8; 973–86. doi:10.1177/0021998311413623.

20. Salentijn EMJ, Zhang Q, Amaducci S, Yang M, Trindade LM. (2015). New developments in fiber hemp (Cannabis sativa L.) breeding. Industrial Crops and Products; Vol 68; 32–41. doi:10.1016/j.indcrop.2014.08.011.

21. Elfordy S, Lucas F, Tancret F, Scudeller Y, Goudet L. (2008). Mechanical and thermal properties of lime and hemp concrete (“hempcrete”) manufactured by a projection process. Construction and Building Materials; Vol 32; doi:10.1016/j.conbuildmat.2007.07.016.

22. Hanegraaf MC, Biewinga EE, Van Der Bijl G. (1998). Assessing the ecological and economic sustainability of energy crops. Biomass and Bioenergy. doi:10.1016/S0961-9534(98)00042-7.

23. FAO/ICAC. World apparel fiber consumption survey. (2013).

24. Pejic BM, Kostic MM, Skundric PD, Praskalo JZ. (2008). The effects of hemicelluloses and lignin removal on water uptake behavior of hemp fibers. Bioresource Technology. Vol 99; No 15. 152–9. doi:10.1016/j.biortech.2007.12.073.

25. Zegaoui A, Derradji M, Ma R, Cai W, Medjahed A. (2018). Influence of fiber volume fractions on the performances of alkali modified hemp fibers reinforced cyanate ester/benzoxazine blend composites. Materials Chemistry and Physics. Vol 123. doi:10.1016/j.matchemphys.2018.04.012.

26. Liu W. (2018). The influence of different chemical treatments on the hemp fiber/polybenzoxazine based green composites: Mechanical, thermal and water absorption properties. Materials Chemistry and Physics. Vol 217. doi:10.1016/j.matchemphys.2018.06.040.

27. Barari B, Omrani E, Moghadam AD, Menezes PL, Pillai KM, Rohatgi PK. (2016). Mechanical , Physical and Tribological Characterization of Nano- Cellulose Fibers Reinforced Bio-Epoxy Composites : An Attempt to Fabricate and Scale the ‘ Green ’ Composite. Carbohydrate Polymer. Vol 147. doi:10.1016/j.carbpol.2016.03.097.

28. Xu Y, Dayo AQ, Wang J, Wang A, Lv D, Zegaoui A. (2018). Mechanical and thermal properties of a room temperature curing epoxy resin and related hemp fibers reinforced composites using a novel in-situ generated curing agent. Materials Chemistry and Physics. Vol 203. 293–301. doi:10.1016/j.matchemphys.2017.10.004.

29. Latha PS, Rao MV, Raghavendra G, Ojha S. (2015). Evaluation of mechanical and tribological properties of bamboo – glass hybrid fiber reinforced polymer composite. Journal of Industrial Textiles. Vol 46; No 1. doi:10.1177/1528083715569376.

30. Sanjay MR, Madhu P, Jawaid M, Senthamaraikannan P, Senthil S, Pradeep S. (2018). Characterization and properties of natural fiber polymer composites : A comprehensive review. Journal of Cleaner Production. Vol 172. 566–81. doi:10.1016/j.jclepro.2017.10.101.

31. Sair S, Oushabi A, Kammouni A, Tanane O, Abboud Y, Hassani FO. (2017). Effect of surface modi fi cation on morphological , mechanical and thermal conductivity of hemp fiber : Characterization of the interface of hemp – Polyurethane composite. Case Studies in Thermal Engineering. Vol 10. 550–9. doi:10.1016/j.csite.2017.10.012.

32. Padmaraj NH, Chethan KN, Utkarsh S, Banerjee S, Utkarsh. (2018). Influence of marine environment on mechanical properties of glass fiber reinforced composites. IOP Conference Series Material Science Engineering. doi:10.1088/1757-899X/377/1/012132.

33. Chilali A, Zouari W, Assarar M, Kebir H, Ayad R. (2017). Effect of water ageing on the load-unload cyclic behaviour of flax fibre-reinforced thermoplastic and thermosetting composites. Composite Structures. Vol 183. doi:10.1016/j.compstruct.2017.03.077.

34. Dayo AQ, Zegaoui A, Nizamani AA, Kiran S, Wang J, Derradji M. (2018). The influence of different chemical treatments on the hemp fiber/polybenzoxazine based green composites: Mechanical, thermal and water absorption properties. Materials Chemistry and Physics. Vol 217. 270–7. doi:10.1016/j.matchemphys.2018.06.040.

35. Kabir MM, Wang H, Lau KT, Cardona F. (2013). Effects of chemical treatments on hemp fibre structure. Applied Surface Science. Vol 276. 13–23. doi:10.1016/j.apsusc.2013.02.086.

36. Dai D, Fan M, Collins P. (2013). Fabrication of nanocelluloses from hemp fibers and their application for the reinforcement of hemp fibers. Industrial Crops and Products. Vol 44. 192–9. doi:10.1016/j.indcrop.2012.11.010.

37. Efendy MGA, Pickering KL. (2014). Comparison of harakeke with hemp fibre as a potential reinforcement in composites. Composites : Part A Applied Science and Manufacturing. Vol 67. 259–67. doi:10.1016/j.compositesa.2014.08.023.

38. Haghighatnia T, Abbasian A, Morshedian J. (2017). Hemp fiber reinforced thermoplastic polyurethane composite: An investigation in mechanical properties. Industrial Crops and Products. Vol 108. 853–63. doi:10.1016/j.indcrop.2017.07.020.