Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science


DOI: 10.5937/jaes16-17189
This is an open access article distributed under the CC BY-NC-ND 4.0 terms and conditions. 
Creative Commons License Volume 16 article 543 pages: 383 - 390

Rudi Hariyanto
Department of Mechanical Engineering, Merdeka University, Malang – Indonesia

Sudjito Soeparman
Department of Mechanical Engineering, Brawijaya University, Malang – Indonesia 

Denny Widhiyanuriyawan
Department of Mechanical Engineering, Brawijaya University, Malang – Indonesia 

Mega Nur Sasongko
Department of Mechanical Engineering, Brawijaya University, Malang – Indonesia 

This study aims to overview the ability of ventilated blades to improve the performance of the Savonius rotor based on CFD simulation. Rotor performance is analyzed by static torque, pressure profile, a airflow profile and vortex area. The boundary conditions for all simulations use the assumption that the wind speed is 5 m/s and the environmental pressure is 1 atm or 101325 Pa. The CFD simulation results have strengthen the published experimental results. Ventilation with the 5% gap width of blade diameter (the SV05 model) gives the best performance. Static torque of SV05 model is 23.8% higher than the conventional Savonius (SC) rotor. Based on pressure and airflow profile of CFD simulation results, ventilation on the blade can add the mass flow rate of air and make the lift force work early on rotating angle of 0o and 165°. Ventilation on  the blade also able to  improve  the critical condition and vortex area as seen in the SC rotor. This is shown by a static torque from the CFD simulation results. The static torque value of the SV05 rotor are 69% and 73% higher than the SC rotor at the 165° and 0° rotation angle.

View article

The authors would like to thank the Studio of Design & Systems Engineering, Mechanical Engineering Department, Brawijaya University. Special thanks to Mr. Darto (lecturer of Mechanical Engineering Department, Merdeka University) who has taught the mastercam program.

Hariyanto, R., Soeparman, S., Denny, W., & Mega, N.S. (2016). Experimental Study On Improvement The Performance Of Savonius Windmill With Ventilated Blade. International Journal Of Renewable Energy Research (IJRER), Vol.6, No.4, 1403-1409. ( Retrieved from

Tian, W., Song, B., VanZwieten, J., & Pyakurel, P. (2015). Computational Fluid Dynamics Prediction of a Modified Savonius Wind Turbine with Novel Blade Shapes. Energies, 8(8), 7915-7929. 8(8): 7915-7929. doi:10.3390/en8087915

Ali, M.H. (2013). Experimental Comparison Study for Savonius Wind Turbine of Two and Three Blades at Low Wind Speed. Int. J. Modern Eng. Research, Vol.3 issue 5, 2978-2986. ( Retrieved from

Saha, U.K., Thotla, S., & Maity, D. (2008). Optimum design configuration of Savonius rotor through wind tunnel experiments. Journal of Wind Engineering and Industrial Aerodynamics, 96(8-9), 1359-1375. 96(8-9): 1359-1375. doi:10.1016/j.jweia.2008.03.005

Hayashi, T., Li, Y., & Hara, Y. (2005). Wind Tunnel Tests on a Different Phase Three-Stage Savonius Rotor. JSME International Journal Series B, 48(1), 9-16. 48(1): 9-16. doi:10.1299/jsmeb.48.9

Kamoji, M.A., Kedare, S.B., & Prabhu, S.V. (2009). Experimental investigations on single stage modified Savonius rotor. Applied Energy, 86(7-8), 1064-1073. 86(7-8): 1064-1073. doi:10.1016/j.apenergy.2008.09.019

Saha, U.K., & Rajkumar, M.J. (2006). On the performance analysis of Savonius rotor with twisted blades. Renewable Energy, 31(11), 1776-1788. 31(11): 1776-1788. doi:10.1016/j.renene.2005.08.030

Nakajima, M., Iio, S., & Ikeda, T. (2008). Performance of Double-step Savonius Rotor for Environmentally Friendly Hydraulic Turbine. Journal of Fluid Science and Technology, 3(3), 410-419. 3(3): 410-419. doi:10.1299/jfst.3.410

Gupta, R., Biswas, A., & Sharma, K.K. (2008). Comparative study of a three-bucket Savonius rotor with a combined three-bucket Savonius–three-bladed Darrieus rotor. Renewable Energy, 33(9), 1974-1981. 33(9): 1974-1981. doi:10.1016/j.renene.2007.12.008

Yaakob, O., Tawi, K.B., & Suprayogi, D.T. (2010). Computer Simulation Studies on The Effect Overlap Ratio for Savonius Type Vertical Axis Marine Current Turbine. IJE Transaction A: Basic, Vol. 23, 79-88. ( Retrieved from

Roy, S., & Saha, U.K. (2013). Computational Study to Assess the Influence of Overlap Ratio on Static Torque Characteristics of a Vertical Axis Wind Turbine. Procedia Engineering, 51, 694-702. 51(): 694-702. doi:10.1016/j.proeng.2013.01.099

Menet, J.L., & Bourabaa, N. (2008). Increase in the Savonius Efficiency via a parametric investigation. ENSIAME Journal,59313. (…. Retrieved from

Zhou, T., & Rempfer, D. (2013). Numerical study of detailed flow field and performance of Savonius wind turbines. Renewable Energy, 51, 373-381. 51(): 373-381. doi:10.1016/j.renene.2012.09.046

D’Alessandro, V., Montelpare, S., Ricci, R., & Secchiaroli, A. (2010). Unsteady Aerodynamics of a Savonius wind rotor: a new computational approach for the simulation of energy performance. Energy, 35(8), 3349-3363. 35(8): 3349-3363. doi:10.1016/

Hariyanto, R., Soeparman, S., Denny, W., & Mega, N.S. (2016). Analysis the Vortex Effect on the Performance of Savonius Windmill Based On Cfd (Computational Fluid Dynamics) Simulation and Video Recording. International Journal Of Renewable Energy Research (IJRER), Vol.6, No.3, 931-937 ( Retrieved from

Pope, K., Rodrigues, V., Doyle, R., Tsopelas, A., Gravelsins, R., Naterer, G.F., & Tsang, E. (2010). Effects of stator vanes on power coefficients of a zephyr vertical axis wind turbine. Renewable Energy, 35(5), 1043-1051. 35(5): 1043-1051. doi:10.1016/j.renene.2009.10.012