Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science


DOI: 10.5937/jaes17-21189
This is an open access article distributed under the CC BY-NC-ND 4.0 terms and conditions. 
Creative Commons License

Volume 17 article 614 pages: 338 - 353

Yerbol Saginovich Ikhsanov* 
Al-Farabi Kazakh National University

Michael Nauryzbaev 
Al-Farabi Kazakh National University

Altynay Musabekova 
Al-Farabi Kazakh National University

Mereke Alimzhanova 
Al-Farabi Kazakh National University

Erlan Burashev 
Al-Farabi Kazakh National University

The article presents a comparative analysis of various methods and conditions of extraction from the plant Nicotiana tabacum l, harvested in the Almaty region of the Republic of Kazakhstan in 2018. The study of extracts obtained by the traditional method (Extraction using non-polar organic solvents at atmospheric pressure) of solvent extraction in particular hexane, and the method of supercritical fluid extraction, carbon dioxide, under various conditions of the process. Three different supercritical extraction modes were selected, namely: at a relatively low pressure of 120 bar and a low temperature of 28°C, at an elevated temperature with the same pressure (60°C, 120 bar) and at an elevated temperature and pressure (80°C , 170 bar). As a result of studying the obtained extracts by GC-MS, their qualitative and quantitative composition was identified. It has been established that the largest number of various compounds is extracted by supercritical fluid extraction at a relatively low pressure of 150 bar for this method and a low temperature of 28°C, but the most popular compound in the studied raw material, nicotine, is extracted with approximately the efficiency similar to the classical method. To increase the yield of the target component, the extraction conditions were changed. As a result, a significant increase in the degree of extraction of the target product was achieved under the following conditions: pressure 120 bar, temperature 60°C. Under these conditions, the degree of extraction was 47.40%. Conducted to control and more fully study the laws of the extraction process (at elevated pressure) showed less efficiency, only 12.29%. This result is lower in efficiency than the classical extraction method.From the data obtained, it follows that for the extraction of nicotine, a substance belonging to the class of alkaloids and which is resistant to thermal destruction, preferred and most effective, is the mode of supercritical extraction at a temperature of 60°C and a pressure of 120 bar.

View article

This work was carried out within the framework of the grant financing program of the SC MES RK BR05236420 “Green Technologies Based on Supercritical Media.”

1. Herrero, M., Mendiola, J.A., Cifuentes, A., Ibáñez, E.(2010). Supercritical fluid extraction: recent advances and applications. Journal of Chromatography A,vol. 1217 no. 16, 2495–2511doi:10.1016/j.chroma.2009.12.019

2. Diaz, M.S., Brignole, E.A.(2009). Modeling and optimization of supercritical fluid processes. The Journal of Supercritical Fluids, vol. 47, no. 3, 611–618 doi:10.1016/j.supflu.2008.09.006

3. Kassama, L.S., Shi, J., Mittal, G.S.(2008). Optimization of supercritical fluid extraction of lycopene from tomato skin with central composite rotatable design model. Separation and Purification Technology,vol. 60 no. 3, 278–284 doi:10.1016/j.seppur.2007.09.005

4. Machida, H., Takesue, M., Smith, R.L.(2011). Green chemical processes with supercritical fluids: properties, materials, separations and energy. The Journal of Supercritical Fluids,vol.60, 2–15,doi:10.1016/j.supflu.2011.04.016

5. Qiu S., Sun H., Zhang A.H., Xu H.Y., Yan G.L., Han Y., Wang X.J. (2014) Natural alkaloids: basic aspects, biological roles, and future perspectives. Chin J Nat Med, vol.12, no. 6,401–406,doi:10.1016/s1875-5364(14)60063-7

6. Ruiz-Rodriguez A., Bronze M.R., Ponte M.N. (2008) Supercritical fluid extraction of tobacco leaves: A preliminary study on the extraction of solanesol. J. Supercrit. Flu, vol.45, no.2,171-176,doi:10.1016/j.supflu.2007.10.011

7. Myers R. L. (2007) The Most Important Chemical Compounds: A Reference Giude Greenwood Press.

8. Schraufnagel D. E., Blasi F., David C. L., Mark J., Raul S.; Richard Van Zyl-Smit(2014) Electronic Cigarettes. A Position Statement of the Forum of International Respiratory Societies. American Journal of Respiratory and Critical Care Medicine,vol.190 no. 6,611—618,doi:10.1164/rccm.201407-1198pp

9. Bruin J. E., Gerstein H. C., Holloway A. C. (2010) Long-term consequences of fetal and neonatal nicotine exposure: a critical review. Toxicological Sciences, vol.116,no. 2,364—374,doi:10.1093/toxsci/kfq103

10. Blankenship J.D., Houseknecht J.B., Pal S., Bush L.P., Grossman R.B., Schardl C.L. (2005) Biosynthetic precursors of fungal pyrrolizidines, the loline alkaloids. Chembiochem, vol.6, no. 6,1016–1022,doi:10.1002/cbic.200400327

11. Cushnie T.P., Cushnie B., Lamb A.J. (2014) Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities.Int J Antimicrob Agents,vol .44, no. 5, 377–386, doi:10.1016/j.ijantimicag.2014.06.001

12. Caprioli G., Sagratini G., Vittori S. (2018) Optimization of an extraction procedure for the simultaneous quantification of riboflavin, nicotinamide and nicotinic acid in anchovies (Engraulisenrasicolus) by high-performance liquid chromatography–tandem mass spectrometry .J. Food Comp. Anal, vol. 66, 23-29, doi:10.1016/j.jfca.2017.11.004

13. Mahpishanian S., Sereshti H. Graphene. (2014) oxide-based dispersive micro-solid phase extraction for separation and preconcentration of nicotine from biological and environmental water samples followed by gas chromatography-flame ionization detection.Talanta, vol.130, 71-77, doi:10.1016/j.talanta.2014.06.004

14. Anastas P., Eghbali N. (2010). Green chemistry: principles and practice. Chem. Soc,vol. 39, no. 1, 301–312, doi:10.1039/b918763b

15. Azmir J., Zaidul I.S.M., Rahman M.M., Sharif, K.M., Mohamed, A., Sahena, F., Jahurul, M.H.A., Ghafoor, K., Norulaini, N.A.N., Omar, A.K.M.(2013). Techniques for extraction of bioactive compounds from plant materials: a review. J. Food Eng,vol. 117, no. 4, 426–436,

16. Barba F.J., Zhu Z., Koubaa M., Sant’Ana A.S., Orlien V.(2016). Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: a review. Trends Food Sci. Technol,vol. 49, 96-109, doi:10.1016/j.tifs.2016.01.006

17. Bernardo-Gil, G., Oneto, C., Antunes, P., Rodriguez, M.F., Empis J.M.(2001).Extraction of lipids from cherry seed oil using supercritical carbon dioxide. Eur. Food Res.Tech,vol. 212, no. 2, 170–174, doi:10.1007/s002170000228

18. Bernhoft, A.(2010).A brief review on bioactive compounds in plants. In: Bernhoft, A. (Eds.), Bioactive compounds in plants: benefits and risks for man and animals. Novus Forlag, Norway

19. Brunner, G., (2005). Supercritical fluids: technology and application to food processing. J. Food Eng,vol. 67, no. 1-2, 21–33, doi:10.1016/j.jfoodeng.2004.05.060

20. Cavero, S., Garcίa-Risco, M.R., Marίn, F.R., Jaime, L., Santoyo, S., Senorans, F.J, Reglero, G., Ibáñez, E.(2006). Supercritical fluid extraction of antioxidant compounds from oregano. Chemical and functional characterization via LC–MS and in vitro assays. J. Supercrit. Fluids,vol. 38, no. 1, 62–69, doi:10.1016/j.supflu.2005.01.003

21. Chemat, F., Vian, M.A., Cravotto G. (2012). Green extraction of natural products: concept and principles. Int. J. Molec. Sci,vol.13, no. 7, 8615–8627, doi:10.3390/ijms13078615

22. Daood, H.G., Illes, V., Gnayfeed, M.H., Meszaros, B., Horvath, G., Biacs, P.A. (2002). Extraction of pungent spice paprika by supercritical carbon dioxide and subcritical propane, J. Supercrit.Fluids.Vol. 23, no. 2, 143–152, doi:10.1016/s0896-8446(02)00022-0

23. De Lucas, A., Rincon, J., Gracia, I. (2003). Influence of operation variables on quality parameters of olive husk oil extracted with CO2: Three-step sequential extraction. J. Am. Oil Chem. Soc. Vol. 80, no. 2, 181-188, doi:10.1007/s11746-003-0674-4

24. Fernández, M.D.L.Á., Espino, M., Gomez, F.J. V, Silva, M.F.(2018). Novel approaches mediated by tailor-made green solvents for the extraction of phenolic compounds from agro-food industrial by-products. Food Chem. vol. 239, 671–678, doi:10.1016/j.foodchem.2017.06.150

25. Gámiz-Gracia, M., Luque de Castro, M.D.(2000). Continuous subcritical water extraction of medicinal plant essential oil: comparison with conventional techniques. Talanta, vol. 51, no. 6, 1179-1185, doi:10.1016/s0039-9140(00)00294-0

26. Gil-Chávez, J. G., Villa, J.A., Fernando Ayala-Zavala, J., Basilio Heredia, J., Sepulveda, D., Yahia, E.M., González-Aguilar, G.A.(2013). Technologies for extraction and production of bioactive compounds to be used as nutraceuticals and food ingredients: an overview.Compr. Rev. Food Sci. Food Saf, vol. 12, no. 1, 5-23, doi:10.1111/1541-4337.12005

27. Han, X., Cheng, L., Zhang, R., Bi, J.(2009).Extraction of safflower seed oil by supercritical CO2. J. Food Eng,vol.92, no. 4, 370–376, doi:10.1016/j.jfoodeng.2008.12.002

28. Herrero, M., Castro-Puyana, M., Mendiola, J.A., Ibanez, E.(2013).Compressed fluids for the extraction of bioactive compounds. Trends Anal. Chem,vol. 43, 67-83, doi:10.1016/j.trac.2012.12.008

29. Herrero, M., Cifuentes, A., Ibanez, E.(2006). Sub-and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae: A review. Food Chem, vol. 98, no. 1, 136-148, doi:10.1016/j.foodchem.2005.05.058

30. Jerković, I., Molnar, M., Vidović, S., Vladić, J., Jokić, S.(2017). Supercritical CO2 Extraction of Lavandulaangustifolia Optimization of Oxygenated Monoterpenes, Coumarin and Herniarin Content. Phytochem. Anal,vol. 28, no. 6,558–566, DOI: 10.1002/pca.2705

31. Jokić, S., Bijuk, M., Aladić, K., Bilić, M., Molnar, M.(2016).Optimization of supercritical CO2 extraction of grape seed oil using response surface methodology. Int. J. Food Sci. Tech, vol.51, no. 2, 403–410, doi:10.1111/ijfs.12986

32. Jokić, S., Jerković, I., Rajić, M., Aladić, K., Bilić, M., Vidović, S. (2017). SC-CO2 extraction of Vitexagnus-castus L. fruits: the influence of pressure, temperature and water presoaking on the yield and GC-MS profiles of the extracts in comparison to the essential oil composition. J. Supercrit. Fluids,vol.123, 50–57, doi:10.1016/j.supflu.2016.12.007

33. Kotnik, P., Škerget, M., Knez, Ž.(2006).Kinetics of supercritical carbon dioxide extraction of borage and evening primrose seed oil. Eur. J. Lipid Sci. Technol,vol.108, no. 7, 569-576, doi:10.1002/ejlt.200600070

34. Cvjetko B., Vidovic S., RadojciˇI.´ c, Joki S.(2018).New perspective in extraction of plant biologically active compounds by green solvents. Food and Bioproducts Processing,vol. 109, 52-73,