Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science

SYNGAS DERIVED FROM CATALYTIC GASIFICATION OF FINE COAL WASTE USing INDONESIAN POTENTIAL CATALYST


DOI: 10.5937/jaes0-30990 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 19 article 872 pages: 934-941

Muhammad Faizal*
Univesitas Sriwijaya, Faculty of Engineering, Chemical Engineering Department, South Sumatra, Indonesia

Nabila Aprianti
Univesitas Sriwijaya, Faculty of Engineering, Chemical Engineering Department, South Sumatra, Indonesia; Universitas Sriwijaya, Graduate School, South Sumatra, Indonesia

Muhammad Said
Univesitas Sriwijaya, Faculty of Engineering, Chemical Engineering Department, South Sumatra, Indonesia

Subriyer Nasir
Univesitas Sriwijaya, Faculty of Engineering, Chemical Engineering Department, South Sumatra, Indonesia

Fine coal waste from the coal mining process has not been used as clean energy even though the amount is very abundant in the world. The conversion of fine coal to syngas is a new way to increase the value of fine coal. Syngas composition, gas ratio, gasification efficiency, and heating value of syngas have been determined under various conditions of temperature (550-750 °C) and bentonite catalyst ratio (0-0.25). The results indicate that fine coal is the suitable raw material for the gasification process. The increase in temperature has increased the volume percentage of H2. At the highest temperature (750 °C), the gas composition consists of 42.6 vol% H2, 19.1vol% CO, 19.5 vol% CH4, and 7.9vol% CO2. The best performance was achieved when the catalyst/feed ratio is 0.25 with the gas composition of 54.3vol% H2, 26.2vol% CO, 23.8 vol% CH4, and 3.5vol% CO2, heating value and gasification efficiency were 19.72 MJ/Nm3 and 72.27% at 750 °C.

View article

The authors are grateful to the Ministry of Education and Culture Republic of Indonesia for research funding support through Pendidikan Magister menuju Doktor untuk Sarjana Unggul (PMDSU) scheme and scholarship (Grant No. 270/SP2H/AMD/LT/DRPM/2020 and 0222/UN9/SB3.LP2M.PT/2020). The authors thank PT. Pertamina RU III Plaju, Palembang for analysis support.

1. Li, G., Cui, P., Wang, Y., Liu, Z., Zhu, Z., Yang, S. (2020). Life cycle energy consumption and GHG emissions of biomass-to-hydrogen process in comparison with coal-to-hydrogen process. Energy, 191, 116588, 191, DOI: 10.1016/j.energy.2019.116588.

2. Song, Y., Wang, N. (2019). Exploring temporal and spatial evolution of global coal supply-demand and flow structure. Energy, 168, 1073–1080, DOI: 10.1016/j.energy.2018.11.144.

3. Lu, Y., Wang, X., Liu, W., Li, E., Cheng, F., Miller, J. D. (2019). Dispersion behavior and attachment of high internal phase water-in-oil emulsion droplets during fine coal flotation. Fuel, 253, 273–282, DOI: 10.1016/j.fuel.2019.05.012.

4. Sahinoglu, E. (2018). Cleaning of high pyritic sulfur fine coal via flotation, Advanced Powder Technology, 29, 7, 1703–1712, DOI: 10.1016/j.apt.2018.04.005.

5. Yu, X., Luo, Z., Gan, D. (2019). Desulfurization of high sulfur fine coal using a novel combined beneficiation process. Fuel, 254, 115603, DOI: 10.1016/j.fuel.2019.06.011.

6. Adeleke, A. A., Odusote, J. K., Lasode, O. A., Ikubanni, P. P., Malathi, M., Paswan, D. (2019). Densification of coal fines and mildly torrefied biomass into composite fuel using different organic binders. Heliyon, 5, 7, 0–6, DOI: 10.1016/j.heliyon.2019.e02160.

7. Dzikuc, M., Kurylo, P., Dudziak, R., Szufa, S., Dzikuc, M., Godzisz, K. (2020). Selected aspects of combustion optimization of coal in power plants. Energies, 13, 9, DOI: 10.3390/en13092208.

8. Balraj, A., Krishnan, J., Selvarajan, K., Sukumar, K. (2020). Potential use of biomass and coal-fine waste for making briquette for sustainable energy and environment. Environmental Science and Pollution Research, DOI: 10.1007/s11356-020-10312-2.

9. Manyuchi, M. M., Mbohwa, C., Muzenda, E. (2018). Value addition of coal fines and sawdust to briquettes using molasses as a binder. South African Journal of Chemical Engineering, 26, 70–73, DOI: 10.1016/j.sajce.2018.09.004.

10. Aprianti, N., Faizal, M., Said, M., Nasir, S. (2020). Valorization of palm empty fruit bunch waste for syngas production through gasification. Journal of Ecological Engineering, 21, 7, 17–26, DOI: 10.12911/22998993/125461.

11. Tian, Y., Zhou, X., Lin, S., Ji, X., Bai, J., Xu, M. (2018). Syngas production from air-steam gasification of biomass with natural catalysts. Science of the Total Environment, 645, 518–523, DOI: 10.1016/j.scitotenv.2018.07.071.

12. Monir, M. U., Aziz, A. A., Kristanti, R. A., Yousuf, A. (2018). Syngas production from co-gasification of forest residue and charcoal in a pilot scale downdraft reactor, Waste and Biomass Valorization, 11, 2, 635–651, DOI: 10.1007/s12649-018-0513-5.

13. Jingna, X., Guanhua, N., Hongchao, X., Shang, L., Qian, S., Kai, D. (2019). The effect of adding surfactant to the treating acid on the chemical properties of an acid-treated coal. Powder Technology, 356, 263–272, DOI: 10.1016/j.powtec.2019.08.039.

14. Wang, Y., Tang, Y., Guo, X., Xie, Q., Finkelman, R. B., Li, P., Chen, P. (2019). Fate of potentially hazardous trace elements during the entrained-flow coal gasification processes in China. Science of the Total Environment, 668, 854–866, DOI: 10.1016/j.scitotenv.2019.03.076.

15. Guo, X., Tang, Y., Wang, Y., Eble, C. F., Finkelman, R. B., Li, P. (2020). Evaluation of carbon forms and elements composition in coal gasification solid residues and their potential utilization from a view of coal geology. Waste Management, 114, 287–298, DOI: 10.1016/j.wasman.2020.06.037.

16. Wang, D., Yang, H., Wu, Y., Zhao, C., Ju, F., Wang, X., Zhang, S., Chen, H. (2020). Evolution of pore structure and fractal characteristics of coal char during coal gasification. Journal of the Energy Institute, 93, 5, 1999–2005, DOI: 10.1016/j.joei.2020.04.015.

17. Yahaya, A. Z., Somalu, M. R., Muchtar, A., Sulaiman, S. A., Daud, W. R. W. (2019). Effect of particle size and temperature on gasification performance of coconut and palm kernel shells in downdraft fixed-bed reactor. Energy, 175, 931–940, DOI: 10.1016/j.energy.2019.03.138.

18. Weng, Z., Kanchanatip, E., Hantoko, D., Yan, M., Su, H., Zhang, S., Wang, G. (2020). Improving supercritical water gasification of sludge by oil palm empty fruit bunch addition: Promotion of syngas production and heavy metal stabilization. Chinese Journal of Chemical Engineering, 28, 1, 293–298, DOI: 10.1016/j.cjche.2019.08.004.

19. Arun, K., Ramanan, M. V., Mohanasutan, S. (2020). Comparative studies and analysis on gasification of coconut shells and corn cobs in a perforated fixed bed downdraft reactor by admitting air through equally spaced conduits. Biomass Conversion and Biorefinery, 71, DOI: 10.1007/s13399-020-00872-1.

20. Sanlisoy, A., Melez, H., Carpinlioglu, M. O. (2017). Characteristics of the solid fuels for the plasma gasification. Energy Procedia, 141, 282–286, DOI: 10.1016/j.egypro.2017.11.106.

21. Yang, Z., Peng, H., Zhang, Z., Ju, W., Li, G., Li, C. (2019). Atmospheric-variational pressure-saturated water characteristics of medium-high rank coal reservoir based on NMR technology. Fuel, 256, 1, 115976, DOI: 10.1016/j.fuel.2019.115976.

22. ÖzyuǧUran, A., Yaman, S. (2017). Prediction of Calorific Value of Biomass from Proximate Analysis. Energy Procedia, 107, 130–136, DOI: 10.1016/j.egypro.2016.12.149.

23. Li, Y., Honaker, R., Chen, J., Shen, L. (2016). Effect of particle size on the reverse flotation of subbituminous coal. Powder Technology, 301, 323–330, DOI: 10.1016/j.powtec.2016.06.019.

24. Wu, J., Wang, J., Liu, J., Yang, Y., Cheng, J., Wang, Z., Zhou, J., Chen, K. (2017). Moisture removal mechanism of low-rank coal by hydrothermal dewatering: Physicochemical property analysis and DFT calculation. Fuel, 187, 242–249, DOI: 10.1016/j.fuel.2016.09.071.

25. Qin, Y., He, Y., Ren, W., Gao, M., Wiltowski, T. (2020). Catalytic effect of alkali metal in biomass ash on the gasification of coal char in CO2. Journal of Thermal Analysis and Calorimetry, 139, 5, 3079–3089, DOI: 10.1007/s10973-019-08719-2.

26. Aydin, E. S., Yucel, O., Sadikoglu, H. (2019). Experimental study on hydrogen-rich syngas production via gasification of pine cone particles and wood pellets in a fixed bed downdraft gasifier. International Journal of Hydrogen Energy, 44, 32, 17389–17396, DOI: 10.1016/j.ijhydene.2019.02.175.

27. Madadian, E., Orsat, V., Lefsrud, M. (2017). Comparative study of temperature impact on air gasification of various types of biomass in a research-scale down-draft reactor. Energy and Fuels, 31, 4, 4045–4053, DOI: 10.1021/acs.energyfuels.6b03489.

28. Oliveira, A. de N. de., Lima, M. A. B. de., Pires, L. H. de O., Silva, M. R. de., Luz, P. T. S. da., Angelica, R. S., Filho, G. N. da R., Costa, C. E. F. da., Luque, R., Nascimento, L. A. S. do. (2019). Bentonites modified with phosphomolybdic heteropolyacid (HPMo) for biowaste to biofuel production. Materials, 12, 9, DOI: 10.3390/ma12091431.

29. Shahbaz, M., Yusup, S., Inayat, A., Patrick, D. O., Ammar, M., Pratama, A. (2017). Cleaner Production of hydrogen and syngas from catalytic steam palm kernel shell gasification using CaO sorbent and coal bottom ash as a catalyst. Energy and Fuels, 31, 12, 13824–13833, DOI: 10.1021/acs.energyfuels.7b03237.

30. Okolie, J. A., Nanda, S., Dalai, A. K., Berruti, F., Kozinski, J. A. (2020). A review on subcritical and supercritical water gasification of biogenic, polymeric and petroleum wastes to hydrogen-rich synthesis gas,” Renewable and Sustainable Energy Reviews, 119, 109546, DOI: 10.1016/j.rser.2019.109546.

31. Su, H., Liao, W., Wang, J., Hantoko, D., Zhou, Z., Feng, H., Jiang, J., Yan, Mi. (2020). Assessment of supercritical water gasification of food waste under the background of waste sorting: Influences of plastic waste contents. International Journal of Hydrogen Energy, 45, 41, 21138–21147, DOI: 10.1016/j.ijhydene.2020.05.256.

32. Aprianti, N., Faizal, M., Said, M., Nasir, S. (2021). Catalytic gasification of oil palm empty fruit bunch by using Indonesian bentonite as the catalyst. Journal of Applied Engineering Science, 1–10, DOI: 10.5937/jaes0-28781.