Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science

PREDICTION THE SHEAR STRENGTH AND SHEAR MODULUS OF SAND-CLAY MIXTURE USING BENDER ELEMENT


DOI: 10.5937/jaes0-30619 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 20 article 917 pages: 168-176

Badee Alshameri*
National University of Sciences and Technology, Pakistan

Employing the conventional laboratory geotechnical methods such as shear box test to measure shear strength and shear modulus require destroying the samples which is seen as time consuming and costly. Whilst the bender element technique (BE) maintains the sample condition, time, and cost efficiency. Several sand-clay mixtures were compacted and subjected to bender element test as well as sheared using shear box test to measure and correlate shear modulus (τ), shear strength (G) and the maximum shear modulus (Gmax). The results showed the critical stage (transition fines-grained) at fine-grained (FG) equal to 50% where any further increment beyond this value led to decrement the soil mixture strength. Both τ and G were normalized using moisture content, density, and applied normal stress. Five empirical equations from the normalized shear strength τN were applied on the previous field data to exam their reliable and limitations. The equations indicated the importance of including the effect of overburden pressure for the natural sample as well as the in-situ moisture content and field density to avoid uncertainty in the predicted value of the soil shear strength and modulus. At no depth limitation, all empirical equations (

View article

1. Hashemi, S. M., Rahmani, I. (2018). Determination of Multilayer Soil Strength Parameters Using Genetic Algorithm. Civil Engineering Journal, vol. 4, no. 10, 2383, DOI: 10.28991/cej-03091167.

2. Alshameri, B., Bakar, I., Madun, A., Abdeldjouad, L., Dahlan, S. H. (2016). Effect of Coarse Materials Percentage in the Shear Strength. IOP Conference Series: Materials Science and Engineering, vol. 136, no. 1, DOI: 10.1088/1757-899X/136/1/012017.

3. ASTM-D3080. (2012). Standard Test Method for Consolidated Undrained Direct Simple Shear Testing of Cohesive Soils. DOI: 10.1520/D3080.

4. Yang, S. R., Lin, H. Da. (2009). Influence of soil suction on small-strain stiffness of compacted residual subgrade soil. Transportation Research Record, no. 2101, 63–71, DOI: 10.3141/2101-08.

5. Bahador, M., Pak, A. (2012). Small-Strain Shear Modulus of Cement-Admixed Kaolinite. Geotechnical and Geological Engineering, vol. 30, no. 1, 163–171, DOI: 10.1007/s10706-011-9458-1.

6. Cabalar, A. F., Khalaf, M. M., Karabash, Z. (2018). Shear modulus of clay-sand mixtures using bender element test. Acta Geotechnica Slovenica, vol. 15, no. 1, 3–15, DOI: 10.18690/actageotechslov.15.1.3-15.2018.

7. Zeng, X., Ni, B. (1999). Stress-induced anisotropic Gmax of sands and its measurement. Journal of Geotechnical and Geoenvironmental Engineering, vol. 125, no. 9, 741–749, DOI: 10.1061/(ASCE)1090-0241(1999)125:9(741).

8. Ueno, K., Kuroda, S., Hori, T., Tatsuoka, F. (2019). Elastic shear modulus variations during undrained cyclic loading and subsequent reconsolidation of saturated sandy soil. Soil Dynamics and Earthquake Engineering, vol. 116, 476–489, DOI: 10.1016/j.soildyn.2018.10.041.

9. Asadi, M. B., Asadi, M. S., Orense, R. P., Pender, M. J. (2020). Small-Strain Stiffness of Natural Pumiceous Sand. Journal of Geotechnical and Geoenvironmental Engineering, vol. 146, no. 6, 06020006, DOI: 10.1061/(asce)gt.1943-5606.0002256.

10. Choo, H., Yeboah, N. N., Burns, S. E. (2016). Small to intermediate strain properties of fly ashes with various carbon and biomass contents. Canadian Geotechnical Journal, vol. 53, no. 1, 35–48, DOI: 10.1139/cgj-2014-0069.

11. Pintado, X., Romero, E., Suriol, J., Lloret, A., Madhusudhan, B. N. (2019). Small-strain shear stiffness of compacted bentonites for engineered barrier system. Geomechanics for Energy and the Environment, vol. 18, 1–12, DOI: 10.1016/j.gete.2018.12.001.

12. Sadeghzadegan, R., Naeini, S. A., Mirzaii, A. (2020). Effect of clay content on the small and mid to large strain shear modulus of an unsaturated sand. European Journal of Environmental and Civil Engineering, vol. 24, no. 5, 631–649, DOI: 10.1080/19648189.2017.1415169.

13. Li, J., Wang, B., Zhang, J. (2019). Study on precise measurement of shear modulus of polymer grouting materials using piezoceramic bender elements. Tehnicki Vjesnik, vol. 26, no. 3, 584–591, DOI: 10.17559/TV-20160205080600.

14. Qiu, T., Huang, Y., Guadalupe-Torres, Y., Baxter, C. D. P., Fox, P. J. (2015). Effective soil density for small-strain shear waves in saturated granular materials. Journal of Geotechnical and Geoenvironmental Engineering, vol. 141, no. 9, 1–11, DOI: 10.1061/(ASCE)GT.1943-5606.0001334.

15. Wu, Q., Lu, Q., Guo, Q., Zhao, K., Chen, P., Chen, G. (2020). Experimental investigation on small-strain stiffness of marine silty sand. Journal of Marine Science and Engineering, vol. 8, no. 5, 1–12, DOI: 10.3390/JMSE8050360.

16. Kulkarni, M. P., Patel, A., Singh, D. N. (2010). Application of shear wave velocity for characterizing clays from coastal regions. KSCE Journal of Civil Engineering, vol. 14, no. 3, 307–321, DOI: 10.1007/s12205-010-0307-1.

17. Roje-Bonacci, T., Miščević, P., Salvezani, D. (2014). Non-destructive monitoring methods as indicators of damage cause on Cathedral of St. Lawrence in Trogir, Croatia. Journal of Cultural Heritage, vol. 15, no. 4, 424–431, DOI: 10.1016/j.culher.2013.07.008.

18. Foti, S., Lai, C., Rix, G. J., Strobbia, C. (2014). Surface Wave Methods for Near-Surface Site Characterization. Taylor & Francis Group, LLC, London, DOI: 10.1201/b17268.

19. ASTM-D698. (2012). Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12400 ft-lbf/ft3 (600 kN-m/m3)). West Conshohocken, PA, DOI: 10.1520/D0698-12E01.1.

20. Alshameri, B., Madun, A., Bakar, I. (2017). Assessment on the effect of fine content and moisture content towards shear strength. Geotechnical Engineering, vol. 48, no. 4, 76–86, .

21. Alshameri, B., Madun, A., Bakar, I. (2017). Comparison of the Effect of Fine Content and Density towards the Shear Strength Parameters. Geotechnical Engineering, vol. 48, no. 2, 104–110, .

22. ASTM-D6528. (2007). Standard Test Method for Consolidated Undrained Direct Simple Shear Testing of Cohesive Soils. West Conshohocken, PA, USA, DOI: 10.1520/D6528-07.

23. Lillie, R. J. (1999). Whole Earth Geophysics : An Introductory Textbook for. Prentice Hall Upper Saddle River, New Jersey, USA, .

24. Telford, W. M., Geldart, L. P., Sheriff, R. E. (1990). Applied geophysics. 2nd ed.Press Syndicate of the University of Cambridge, Melbourne, Australia, . http://linkinghub.elsevier.com/retrieve/pii/003192019190163C.

25. ASTM-D854. (2010). Standard Test for Specific Gravity of Soil Solids by Water Pycnometer. West Conshohocken, PA, USA, DOI: 10.1520/D0854-10.

26. Alshameri, B. (2020). Maximum dry density of sand–kaolin mixtures predicted by using fine content and specific gravity. SN Applied Sciences, vol. 2, no. 10, 1693, DOI: 10.1007/s42452-020-03481-9.

27. Khan, M., Liu, Y., Farid, A., Owais, M. (2018). Characterizing Seismo-stratigraphic and Structural Framework of Late Cretaceous-Recent succession of offshore Indus Pakistan. Open Geosciences, vol. 10, no. 1, 174–191, DOI: https://doi.org/10.1515/geo-2018-0014.

28. Alshameri, B., Madun, A., Bakar, I., Mohamad, E. T. (2015). Effect of Sensor Rotation on Assessment of Bender Element Apparatus. Jurnal Teknologi, vol. 77, no. 11, 51–57, DOI: 10.11113/jt.v77.6420.

29. Alshameri, B., Bakar, I., Madun, A., Mohamad, E. T. (2015). Effect of Alignment on the Quality of Bender Element Procedure. Jurnal Teknologi, vol. 76, no. 2, 73–80, DOI: 10.11113/jt.v76.5436.

30. Cabalar, A. F., Demir, S., Khalaf, M. M. (2019). Liquefaction resistance of different size/shape sand-clay mixtures using a pair of Bender element-mounted molds. Journal of Testing and Evaluation, vol. 49, no. 1, 509–524, DOI: 10.1520/JTE20180677.

31. Mitchell, J. K., Soga, K. (2005). Fundamentals of soil behavior. 3rd ed.John Wiley & Sons, Inc, New Jersey, USA, .

32. Belkhatir, M., Arab, A., Della, N., Missoum, H., Schanz, T. (2010). Influence of inter-granular void ratio on monotonic and cyclic undrained shear response of sandy soils. Comptes Rendus - Mecanique, vol. 338, no. 5, 290–303, DOI: 10.1016/j.crme.2010.04.002.

33. Alshameri, B., Madun, A. (2019). Comprehensive Correlations Between the Geotechnical and Seismic Data Conducted via Bender Element. Geotechnical and Geological Engineering, vol. 37, no. 6, 5077–5095, DOI: 10.1007/s10706-019-00963-5.

34. Cabalar, A. F., Mustafa, W. S. (2017). Behaviour of sand–clay mixtures for road pavement subgrade. International Journal of Pavement Engineering, vol. 18, no. 8, 714–726, DOI: 10.1080/10298436.2015.1121782.

35. Robertson, P. K., Sasitharan, S., Cunning, J. C., Sego, D. C. (1995). Shear-wave velocity to evaluate in-situ state of Ottawa sand. Journal of Geotechnical Engineering, vol. 121, no. 3, 262–273, DOI: 10.1061/(ASCE)0733-9410(1995)121:3(262).

36. Francisca, F., Yun, T. S., Ruppel, C., Santamarina, J. C. (2005). Geophysical and geotechnical properties of near-seafloor sediments in the northern Gulf of Mexico gas hydrate province. Earth and Planetary Science Letters, vol. 237, no. 3–4, 924–939, DOI: 10.1016/j.epsl.2005.06.050.

37. Mohamad, E. T., Alshameri, B., Kassim, K. A., Saad, R. (2011). Shear strength behaviour for older alluvium under different moisture content. Electronic Journal of Geotechnical Engineering, vol. 16 F, 605–617.