Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science

INCREASing THE MEASUREMENT OF SOIL WATER CONTENT WITH THE CHARACTERIZATION OF MAGNETIC FIELD INDUCTION SENSORS USING MODEL EQUATIONS FOR THE INTERNET OF THing APPLICATION


DOI: 10.5937/jaes0-30730 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 20 article 913 pages: 137-144

Doan Perdana
Telkom University, School of Electrical Engineering, Bandung, Indonesia

Dudi Darmawan
Telkom University, School of Electrical Engineering, Bandung, Indonesia

Abrar Ismardi
Telkom University, School of Electrical Engineering, Bandung, Indonesia

I Ketut Agung Enriko
Institute Teknologi Telkom Purwokert, Faculty of Electrical Engineering, Purwokerto, Indonesia

Indra Wahyudhin Fathona
Telkom University, School of Electrical Engineering, Bandung, Indonesia

Ongko Cahyono
University of Sebelas Maret, Faculty of Agriculture, Surakarta, Indonesia

This study proposes an increase in the measurement of soil water content with sensor characterization that can be integrated with the internet of things. The main contribution of this work is the improvement in measurement accuracy compared to measurements using a moisture meter. This is achieved through an electromagnetic approach using a pair of transceiver coils as a sensor. Determination of water content in the soil is carried out through the formulation of an equation model that connects the measured voltage on the receiving coil with the mass of water contained. It is known that the use of the equation model in the test data results in better accuracy with an error of 2.03% - 17.43%, compared to measurements using a moisture measuring device with an error of 13.21% - 32%. This equation model that uses the electromagnetic method provides an alternative solution for determining the soil water for wider land use so that can be used for internet of things application.

View article

1. Aniley, AA., Kumar, N., Kumar A. (2018). Soil Moisture Sensors in Agriculture and The Possible Application of Nanomaterials in Soil Moisture Sensors Fabrication, International Journal of Advanced Engineering Research and Technology (IJAERT), Volume 6 Issue 1, ISSN No.: 2348 – 8190

2. Fares A. (2009). Citrus Irrigation Scheduling, Tree and Forestry Science and Biotechnology, Global Science Book.

3. Sojka, R. E., Lehrsch, G., Kostka, S. J., Reed, J. L., Koehn., Foerster, J. (2009). Soil Water Measurements Relevant to Agronomic and Environmental Functions of Chemically Treated Soil, Journal of ASTM International, Vol. 6, No. 1.

4. Shock, C., Wang, F. (2011). Soil Water Tension, a Powerful Measurement for Productivity and Stewardship, Hortscience Vol. 46(2).

5. Pardossi, A., Incrocci, L., Incrocci, G., Malorgio, F., Battista, P., Bacci, L., Rapi, B., Marzialetti, P., Hemming, J., Balendonck, J. (2009). Root Zone Sensors for Irrigation Management in Intensive Agriculture, Sensors, 9, 2809-2835; doi:10.3390/s90402809.

6. El Marazky, M.S.A., Mohammad, F.S., Al-Ghobari H. M. (2011). Evaluation of Soil Moisture Sensors under Intelligent Irrigation Systems for Economical Crops in Arid Regions; American Journal of Agricultural and Biological Sciences 6 (2): 287-300.

7. Zhang, D., Zhou, G. (2016). Estimation of Soil Moisture from Optical and Thermal Remote Sensing: A Review, Sensors16, 1308.

8. Bogena, H.R., Huisman, J.A., Schilling, B., Weuthen, A., Vereecken, H. (2017). Effective Calibration of Low-Cost Soil Water Content Sensors. Sensors, 17, 208.

9. Chen, L., Zhangzhong, L., Zheng, W., Yu, J., Wang, Z., Wang, L., Huang, C. (2019). Data-Driven Calibration of Soil Moisture Sensor Considering Impacts of Temperature: A Case Study on FDR Sensors, Sensors, 19, 4381; doi:10.3390/s19204381.

10. Dias, P.C. et al. (2016). Autonomous soil moisture sensor based on nanostructured thermosensitive resistors powered by an integrated thermoelectric generator, Sensors Actuators A Phys., vol. 239, pp. 1–7, doi: https://doi.org/10.1016/j.sna.2016.01.022.

11. Arsoy, S., Keskin, E., Ozgur, M. (2014). Reliability of soil water content measurements by Calcium carbide gas pressure method for small specimens, Scientia Iranica 21(6):1762-1772.

12. Seyfried, M. S., Murdock, M.D. (2001). Response of a New Soil Water Sensor to Variable Soil, Water Content, and Temperature, Soil Sci. Soc. Am. J. 65:28–34.

13. Spelman, D., Kinzli, K.D., Kunberger, T., (2013). Calibration of the 10HS Soil Moisture Sensor for Southwest Florida Agricultural Soils,” J. Irrig. Drain. Eng., vol. 139, no. 12, pp. 965–971.

14. Sophocleous, M., Atkinson, J.K., Smethurst, J.A., Espindola-Garcia, G., Ingenito, A. (2020). The use of novel thick-film sensors in the estimation of soil structural changes through the correlation of soil electrical conductivity and soil water content, Sensors Actuators A Phys., vol. 301, p. 111773,, doi: https://doi.org/10.1016/j.sna.2019.111773.

15. Futagawa, F., et al. (2018). Fabrication of a low leakage current type impedance sensor with shielding structures to detect a low water content of soil for slope failure prognostics, Sensors Actuators A Phys., vol. 271, pp. 383–388, doi: https://doi.org/10.1016/j.sna.2017.12.022.

16. Barapatre, P., Jayantilal., Patel, N. (2019). Determination of Soil Moisture using Various Sensors for Irrigation Water Management, International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-8 Issue-7.

17. Rudnick, D. R., Djaman, K., Irmak, S. (2015). Performance Analysis of Capacitance snd Electrical Resistance-Type Soil Moisture Sensors in a Silt Loam Soil, American Society of Agricultural and Biological Engineers ISSN 2151-0032, doi:10.13031/trans.58.10761.

18. Gao ID, Z., Zhu ID, Y., Liu, C., Qian, H., Cao, W., Ni, J. (2018). Design and Test of a Soil Profile Moisture Sensor Based on Sensitive Soil Layers, Sensors, 18, 1648; doi:10.3390/s18051648.

19. Kuyper, M.C., Balendonck, J. (2001). Application of Dielectric Soil Moisture Sensors for Real-Time Automated Irrigation Control, Proc. Sensors in Hort. III.

20. Perdana, D., Sari, R. F. (2013). Performance comparison of IEEE 1609.4/802.11p and 802.11e with EDCA implementation in MAC sublayer,” 285-290. Paper presented at 2013 5th International Conference on Information Technology and Electrical Engineering, ICITEE, Yogyakarta, Indonesia.

21. Skierucha, W., Wilczek, A., Alokhina, O. (2008). Calibration of a TDR probe for low soil water content measurements, Sensors Actuators A Phys., vol. 147, no. 2, pp. 544–552, doi: https://doi.org/10.1016/j.sna.2008.06.015.

22. Evelyn J.L., Magriotis, Z.M., Ramalho, T.C. (2008). Influence of magnetic field on physical–chemical properties of the liquid water: Insights from experimental and theoretical models; Journal of Molecular Structure, 888 409-415.

23. Mohamed, A.I. (2013). Effects of Magnetized Low Quality Water on Some Soil Properties and Plant Growth, International Journal of Research in Chemistry and Environment, Vol. 3 Issue (140-147).

24. Kleinberg, R.L., Chew, W.C., Griffin, D.D. (1989). Noncontacting electrical conductivity sensor for remote hostile environments. IEEE Trans. Instrum. Meas., 38, 22-26.

25. Fanous, N.E., Mohamed, A., Shaban, K.H. (2017). Effect of Magnetic Treatment for Irrigation Ground Water on Soil Salinity, Nutrients, Water Productivity and Yield Fruit Trees at Sandy Soil, Egypt. J. Soil Sci. Vol. 57 No. 1, pp.113-123.

26. Hosseini, S.J., Dehbashi, M., (2017). Effect of Magnetic Field on Physical Properties of Flowing Salty Water, International Journal of Scientific Study, Vol 5 Issue 5.

27. Soni, A., Sharma, K., Verma, S.S. (2018). Effect of Magnetic Field on Some Physical Properties of Tap Water, Global Journal of Science Frontier Research: C Biological Science, Volume 18 Issue 2 Version 1.0.

28. Changa, K.T., Weng, C.I. (2006). the effect of an external magnetic field on the structure of liquid water using molecular dynamics simulation, Journal of Applied Physics 100, 043917.

29. Abobatta, W.F. (2019). Overview of Role of Magnetizing Treated Water in Agricultural Sector Development, Advances in Agricultural Technology & Plant Sciences, Volume 2; Issue 1.

30. Neina, D. (2019). The Role of Soil pH in Plant Nutrition and Soil Remediation, Applied and Environmental Soil Science, Article ID 5794869, 9 pages, 2019. https://doi.org/10.1155/2019/5794869.

31. Chibowski, E., Szcze´s, A., Hołysz, L., (2018). Influence of Magnetic Field on Evaporation Rate and Surface Tension of Water, Colloids Interfaces, 2, 68; doi:10.3390.

32. DeLaune, R.D., Pezeshki, S.R. (2001). Plant Functions in Wetland and Aquatic Systems: Influence of Intensity and Capacity of Soil Reduction, The Scientific World Journal, vol. 1, Article ID 975384, 14 pages, https://doi.org/10.1100/tsw.2001.257.

33. Wang, Y., Wei, H., Li, Z. (2018). Effect of magnetic field on the physical properties of water, Results in Physics, Vol 8 Pages 262-267.

34. Nafi kov M., Aipov R., Akchurin S., Akhmarov R., Akhmetyanov I., & Zagirov, I. (2020). Kinetic energy of the swinging separator driven by a linear electric motor. Journal of Applied Engineering Science, 18(3) 378 - 386.

35. Sergeevich, V. E., Evgenievna, N. A., Vladimirovna, T. E., & Viktorovich, A. B. ([2020). Energy efficient water desalination technology. Journal of Applied Engineering Science, 18(4), 614 - 617.

36. Zhu, Y., Qian, S., Wu, Q., Zhang, G., Ma, L., Wang, Z. (2021). Study on fast timing MCP-PMT in magnetic fields from simulation and measurement, Sensors Actuators A Phys., vol. 318, p. 112487, doi: https://doi.org/10.1016/j.sna.2020.112487.

37. Liu, D., Xu, X., Fei, C., Zhu, W., Liu, X., Yu, G., Fang, G. (2015). Direction identification of a moving ferromagnetic object by magnetic anomaly, Sensors and Actuators A: Physical, Volume 229, Pages 147-153, https://doi.org/10.1016/j.sna.2015.03.035.

38. Kurita, K., Fujii, Y., Shimada, K. (2011). A new technique for touch sensing based on measurement of current generated by electrostatic induction, Sensors and Actuators A: Physical, Volume 170, Issues 1–2, Pages 66-71, https://doi.org/10.1016/j.sna.2011.06.005.

39. Michelena, M.D., Uña, J.L.M., Jimenez, M.P., Ramos, M.C.M., Arribas, P.C., Hernández-Ros, C.A. (2017). A novel induction-based device for the measurement of the complex magnetic susceptibility, Sensors and Actuators A: Physical, Volume 263, Pages 471-479, https://doi.org/10.1016/j.sna.2017.07.015.

40. Riski Muktiarto, N.A., Perdana, D., Negara, R.M. (2018). “Performance analysis of mobility impact on IEEE 802.11ah standard with traffic pattern scheme,” Int. J. Commun. Networks Inf. Secur., vol. 10, no. 1, pp. 139–147.

41. Sophocleous, M., Atkinson, J., Smethurst, J., Garcia, G.E., Ingenito, A. (2020). The use of novel thick-film sensors in the estimation of soil structural changes through the correlation of soil electrical conductivity and soil water content, Sensors and Actuators A: Physical, Volume 301, 2020, 111773, https://doi.org/10.1016/j.sna.2019.111773.

42. Futagawa, M., Ogasahara, S., Ito, T., Komatsu, M., Fuwa, Y., Hirano, H., Akita, I., Kusano, K., Watanabe, M. (2018). Fabrication of a low leakage current type impedance sensor with shielding structures to detect a low water content of soil for slope failure prognostics, Sensors and Actuators A: Physical, Volume 271, Pages 383-388, https://doi.org/10.1016/j.sna.2017.12.022.

43. Naderi-Boldaji, M., Sharifi, A., Jamshidi, B., Younesi-Alamouti, M., Minaee, S. (2011). A dielectric-based combined horizontal sensor for on-the-go measurement of soil water content and mechanical resistance, Sensors and Actuators A: Physical, Volume 171, Issue 2, Pages 131-137, https://doi.org/10.1016/j.sna.2011.07.021.

44. Perdana D., Munadi R., Manurung R.C. (2017). Performance evaluation of Gauss-Markov mobility model in hybrid LTE-VANET networks, Telkomnika (Telecommunication Computing Electronics and Control), vol. 15, no. 2.

45. Darko, K., Filipovic, S., Nina, O., Vladimir, P., Ristic, M. (2011). Microstructure evolution and sintering kinetics of ZnO. Journal of Applied Engineering Science. 9. 317-322.

46. Nururrahmah, H., Sudarno, U., Budiyono. (2020). Characteristic lignocellulose of sago solid waste for biogas production. Journal of Applied Engineering Science. 18. 157-164. 10.5937/jaes18-24711.

47. Gala, S., Sumarno, S., Mahfud, M. (2020). Comparison of microwave and conventional extraction methods for natural dyes in wood waste of mahogany (swietenia mahagoni). Journal of Applied Engineering Science, 18(4), 618 - 623.