Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science

ANALYSIS OF LNG CARRIER PROPULSION DEVELOPMENTS


DOI: 10.5937/jaes0-36809 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 20 article 1017 pages: 1122-1132

Ivica Domić
Brodograđevna industrija Split, Put Supavla 21, Split, Croatia

Tatjana Stanivuk
University of Split - Faculty of Maritime Studies, Ruđera Boškovića 37, Split, Croatia

Ladislav Stazić*
University of Split - Faculty of Maritime Studies, Ruđera Boškovića 37, Split, Croatia

Igor Pavlović
University of Split - Faculty of Maritime Studies, Ruđera Boškovića 37, Split, Croatia

The LNG market has undergone major changes and significant development in recent years. With the increase in the number of ships and the increase in the amount of gas transported, the propulsion machinery of LNG ships has also changed. For many years, the steam turbine was the only propulsion engine on this type of cargo ship. A negligible number of vessels powered by a traditional, low-speed, heavy-duty diesel engines are increasingly being replaced by new technologies. Versions of dual-fuel internal combustion engines that burn evaporated natural gas are increasingly replacing steam turbine propulsion systems. This phenomenon has been particularly pronounced in the last few years, when orders for steam turbine-powered LNG vessels have ceased. This article examines and presents the main reasons for these changes, which fall into two categories. The first is financial, as the use of new technologies can lead to significant financial savings in fuel consumption. Fuel costs can be reduced by more than 35% in some cases. The reduction in fuel consumption leads to a significant reduction in overall exhaust emissions and thus a reduction in air pollution and CO2 signature.

View article

1.      Gkonis, K. G., Psaraftis, H. N. (2009). The LNG Market: A Game Theoretic Approach to Competition in LNG Shipping. Maritime Economics & Logistics, vol. 11(2), pp. 227–246, DOI: 10.1057/mel.2009.

2.      Anyanwu, W. (2010). The Nature of LNG Arbitrage A Study of Its Theoretical Growth in Global Market. Cyprus International University. available at: http://www. academia. edu/2627297/The_Nature_of_LNG_Arbitrage_A_Study_of_Its_Theoretical_Growth_in_Global_Market. accessed on: January 26th 2022.

3.      Engelen, S., Dullaert, W. (2010). Transformations in gas shipping: Market structure and efficiency. Maritime Economics & Logistics, vol. 12(3), p. 295-325, DOI: 10.1057/mel.2010.10.

4.      Noble, P. G. (2009). A short history of LNG shipping. Texas Section SNAME.

5.      Bortnowska, M. (2010). Technological and operational concept of an LNG carrier. Scientific Journals of the Maritime University of Szczecin, vol. 21, p. 28-33, ISSN: 2392-0378.

6.      Zanne, M., Grčić, M. (2009). Challenges of LNG (Liquefied Natural Gas) Carriers in 21’ Century. Promet – Traffic & Transportation, vol. 21(1), p. 49-60, DOI: 10.7307/ptt.v21i1.912.

7.      Stanivuk, T., Mahić, J., Stazić, L., Perdić-Lukačević, H. (2021). LNG market and fleet analysis. Transport Problems: an International Scientific Journal, vol. 16(4), p.173-183, DOI: 10.21307/tp-2021-069.

8.      Alterman, S. (2012). Natural gas price volatility in the UK and North America. Oxford Institute for Energy Studies, ISBN. 978-1-907555-43-5

9.      Hailemariam, A., Smyth, R. (2019). What drives volatility in natural gas prices?. Energy Economics, vol. 80, p. 731-742, DOI: 10.1016/j.eneco.2019.02.011

10.   Ruszel, M. (2022). The development of global LNG exports. In The Future of Energy Consumption, Security and Natural Gas, p. 1-20, Palgrave Macmillan, Cham, DOI: 10.1007/978-3-030-80367-4_1

11.   Meza, A., Ari, I., Al-Sada, M. S., Koç, M. (2021). Future LNG competition and trade using an agent-based predictive model. Energy Strategy Reviews, vol. 38, p. 100734, DOI: 10.1016/j.esr.2021.100734.

12.   Liu, Y., Shi, X., Laurenceson, J. (2020). Dynamics of Australia’s LNG export performance: A modified constant market shares analysis. Energy Economics, p. 104808, DOI: 10.1016/j.eneco.2020.104808

13.   Huan, T., Hongjun, F., Wei, L., Guoqiang, Z. (2019). Options and Evaluations on Propulsion Systems of LNG Carriers. Propulsion Systems. DOI: 10.5772/intechopen.82154.

14.   Lindstad, E., Eskeland, G. S., Rialland, A., Valland, A. (2020). Decarbonizing maritime transport: The importance of engine technology and regulations for LNG to serve as a transition fuel. Sustainability, vol. 12(21), p. 8793, DOI: 10.3390/su12218793

15.   Gutierrez, C. G., Labajos, C. Á. P. (2020). Technical structure of the Gas carrier fleet in 2019. Journal of Maritime Research, vol. 17(1), p. 86-92.

16.   Fernández, I. A., Gómez, M. R., Gómez, J. R., Insua, Á. B. (2017). Review of propulsion systems on LNG carriers. Renewable and Sustainable Energy Reviews, vol. 67, p. 1395–1411, DOI: 10.1016/j.rser.2016.09.095

17.   Grzesiak, S.(2018). Alternative Propulsion Plants for Modern LNG Carriers. New Trends in Production Engineering, vol. 1(1), p. 399-407, DOI: 10.2478/ntpe-2018-0050.

18.   Dosa, I. Petrilean, C. D. (2013). Efficiency Assessment of Condensing Steam Turbine. Advances in Environment, Ecosystems, and Sustainable Tourism, ISBN: 978-1-61804-195-1, pp. 203-208.

19.   Mrzljak, V., Poljak, I.,  Prpić-Oršić, J. (2019). Exergy analysis of the main propulsion steam turbine from marine propulsion plant. Brodogradnja: Teorija i praksa brodogradnje i pomorske tehnike, vol. 70(1),pp. 59-77, DOI: 10.21278/brod70105

20.   Yeo, D., Ahn, B., Kim, J., Kim, I. (2007). Propulsion alternatives for modern LNG carriers. In: Gas Technology Institute, 15th International Conference and Exhibition on Liquefied Natural Gas, pp. 620-35.

21.   Ott, M., Alder, R., Nylund, I. (2015). Low Pressure Dual-fuel Technology for Low Speed Marine Engines. ATZextra worldwide, vol. 20(10), p. 34-39, DOI: 10.1007/s40111-015-0506-3

22.   Clausen, N. B. (2009). Marine diesel engines: How efficient can a two-stroke engine be. STG ship efficiency conference, Copenhagen, DE.

23.   Juliussen, L. (2016). ME-GI and ME-LGI Gas Technologies–Development Status and Results. DieselFacts, vol. 2.

24.   Watanabe, E., Tanaka, Y., Nakano, T., Ohyama, H., Tanaka, K., Miyawaki, T., Tsutsumi, M. Shinohara, T. (2003). Development of new high efficiency steam turbine. Mitsubishi Heavy Ind. Tech. Rev, vol. 40(4), p. 6.

25.   Saito, E., Matsuno, N., Tanaka, K., Nishimoto, S., Yamamoto, R. Imano, S. (2015). Latest technologies and future prospects for a new steam turbine. Mitsubishi Heavy Industries Technical Review, vol 52(2), p.39-46.

26.   Iannaccone, T., Landucci, G., Tugnoli, A., Salzano, E., Cozzani, V. (2020). Sustainability of cruise ship fuel systems: Comparison among LNG and diesel technologies. Journal of Cleaner Production, vol. 260, p. 121069, DOI: 10.1016/j.jclepro.2020.121069

27.   Ammar, N. R. (2019). Environmental and cost-effectiveness comparison of dual fuel propulsion options for emissions reduction onboard LNG carriers. Brodogradnja: Teorija i praksa brodogradnje i pomorske tehnike, vol. 70(3), p. 61-77, DOI: 10.21278/brod70304

28.   Pan, P., Sun, Y., Yuan, C., Yan, X., Tang, X. (2021). Research progress on ship power systems integrated with new energy sources: A review. Renewable and Sustainable Energy Reviews, vol. 144, p. 111048, DOI: 10.1016/j.rser.2021.111048

29.   Dotto, A., Campora, U., Satta, F. (2021). Feasibility study of an integrated COGES-DF engine power plant in LNG propulsion for a cruise-ferry. Energy Conversion and Management, vol. 245, p. 114602, DOI: 10.1016/j.enconman.2021.114602

30.   Xu, H., Yang, D. (2020). LNG-fuelled container ship sailing on the Arctic Sea: Economic and emission assessment. Transportation Research Part D: Transport and Environment, vol. 87, p. 102556, DOI: 10.1016/j.trd.2020.102556

31.   Trozzi, C. Vaccaro, R. (1998). Methodologies for estimating future air pollutant emissions from ships. Techne Report MEET RF98b; available at: http://www.inrets.fr/infos/cost319/MEETdel25-ship.pdf. accessed on: February 10th 2022

32.   Trozzi, C. Vaccaro, R., Nicolo, L. (1995). Air pollutants emissions estimate from maritime traffic in the Italian harbours of Venice and Piombino. The Science of the Total Environment, vol. 169, p. 257–263.

33.   Trozzi C. Vaccaro R. (2006). Methodologies for estimating air pollutant emissions from ships: a 2006 update. Environment & Transport 2nd International Scientific Symposium (including 15th conference Transport and Air Pollution), Reims, France: 12-14 June 2006

34.   EMEP/EEA. (2021). Air pollutant emission inventory guidebook 2019 – Updated Dec. 2021

35.   Entec UK Limited. (2007). Ship Emissions Inventory Mediterranean Sea. Final Report for Concawe

36.   Entec UK Limited. (2002). Quantification of emissions from ships associated with ship movements between ports in the European Community. European Commission Final Report

37.   Ship & Bunker. (2022). available at: https://shipandbunker.com/. accessed on: February 15th 2022

38.   Ito, M., Hiraoka, K., Matsumoto, S., Tsumura, K. (2007). Development of high efficiency marine propulsion plant (Ultra Steam Turbine). Mitsubishi Heavy Ind Ltd Tech Rev, vol. 44(3).

39.   Meana-Fernández, A., Peris-Pérez, B., Gutiérrez-Trashorras, A. J., Rodríguez-Artime, S., Ríos-Fernández, J. C., González-Caballín, J. M. (2020). Optimization of the propulsion plant of a Liquefied Natural Gas transport ship. Energy Conversion and Management, vol. 224, p. 113398, DOI: 10.1016/j.enconman.2020.113398

40.   MAN Energy Solutions. (2019). Efficiency of MAN B&W Two-Stroke engines for stationary application. Copenhagen, Denmark

41.   MAN Diesel & Turbo. (2019). Efficiency of MAN B&W two-stroke engines. Augsburg, Germany

42.   Baressi Šegota, S., Lorencin, I., Anđelić, N., Mrzljak, V., Car, Z. (2020). Improvement of marine steam turbine conventional exergy analysis by neural network application. Journal of Marine Science and Engineering, vol. 8(11), p. 884, DOI: 10.3390/jmse8110884

43.   Zhang, T. (2020). Methods of Improving the Efficiency of Thermal Power Plants. Journal of Physics: Conference Series, vol. 1449, p. 012001, DOI: 10.1088/1742-6596/1449/1/012001

44.   Svensson, Bo. (2017). Making The Most Of BOG. Diesel & Gas Turbine Worldwide, vol. 4/2017. KHL Group, Southfields, United Kingdom, available at: https://www.dieselgasturbine.com/news/Making-The-Most-Of-BOG/7004531.article, accessed on: February 15th 2022

45.   Mitrou, P. (2022). LNG fleet seriously exposed to CII impact. Lloyd's Register, 71 Fenchurch Street, EC3M 4BS, United Kingdom, available at: https://www.lr.org/en/insights/articles/lng-fleet-seriously-exposed-to-cii-impact/, accessed on: February 15th 2022

46.   Herdzik, J. (2021). Decarbonization of Marine Fuels—The Future of Shipping. Energies, vol. 14(14), p. 4311, DOI: 10.3390/en14144311

47.   Helgason, R., Cook, D., Davíðsdóttir, B. (2020). An evaluation of the cost-competitiveness of maritime fuels – a comparison of heavy fuel oil and methanol (renewable and natural gas) in Iceland. Sustainable Production and Consumption, vol. 23, p. 236–248, DOI: 10.1016/j.spc.2020.06.007

48.   Köhler, J., Dönitz, E., & Schätter, F. (2022). Transitions for ship propulsion to 2050: The AHOY combined qualitative and quantitative scenarios. Marine Policy, vol. 140, p. 105049, DOI: 10.1016/j.marpol.2022.105049