Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science

IMPACT OF AUTONOMOUS VEHICLES ON THE PERFORMANCE OF A SIGNALIZED INTERSECTION UNDER DIFFERENT MIXED TRAFFIC CONDITIONS: A SIMULATION-BASED INVESTIGATION


DOI: 10.5937/jaes0-39994 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 21 article 1067 pages: 224-240

Mohammed Al-Turki*
Department of Civil & Environmental Engineering, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia

Nedal T. Ratrout
Department of Civil & Environmental Engineering, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia

Ibrahim Al-Sghan
Ministry of Culture (heritage commission), Eastern province, Saudi Arabia

Autonomous driving can overcome the limitations of stochastic human driving behavior. Therefore, implementing autonomous vehicles (AVs) could improve the efficiency of road networks. This study investigates the impacts of AV implementation on the performance of a signalized intersection considering a mixed traffic environment comprising regular vehicles (RVs) and AVs through microscopic traffic simulations. Accordingly, 24 scenarios with different AV implementation rates, AV driving models, and traffic volume conditions, were developed and evaluated using the Vissim simulation software. The results indicated that even partial AV implementation could improve the operational efficiency of a signalized intersection compared to full RV traffic. AV implementation reduced the vehicle delay, stopped delay, and queue length. The expected improvements are primarily based on the implementation rate, and are higher at higher rates (≥50%). The improvements are highest at moderate traffic volumes. Compared to the moderate level, partially replacing RVs with AVs at free-flow conditions does not significantly impact the performance of the intersection. Under congested conditions, the expected improvements from AV implementation are mitigated by the high traffic volumes. Considering the different AV models employed herein, the connected autonomous vehicle (CAV) model exhibited the best performance.

View article

1.      Q. Lu, T. Tettamanti, D. Hörcher, and I. Varga, “The impact of autonomous vehicles on urban traffic network capacity: an experimental analysis by microscopic traffic simulation,” Transp. Lett., vol. 12, no. 8, pp. 540–549, 2020, doi: 10.1080/19427867.2019.1662561.

2.      S. Maryam, O. A. Osman, D. Lord, and K. K. Dixon, “Investigating the safety and operational benefits of mixed traffic environments with different automated vehicle market penetration rates in the proximity of a driveway on an urban arterial,” Accid. Anal. Prev., vol. 152, no. January, p. 105982, 2021, doi: 10.1016/j.aap.2021.105982.

3.      M. Al-turki, A. Jamal, H. M. Al-ahmadi, M. A. Al-sughaiyer, and M. Zahid, “sustainability On the Potential Impacts of Smart Tra ffi c Control for Delay , Fuel Energy Consumption , and Emissions : An NSGA-II-Based Optimization Case Study from Dhahran , Saudi Arabia,” pp. 1–22, 2020.

4.      F. Bohm and K. Häger, “Introduction of Autonomous Vehicles in the Swedish Traffic System Effects and Changes Due to the New Self-Driving Car Technology,” pp. 1–44, 2015, [Online]. Available: http://uu.diva-portal.org/smash/get/diva2:816899/FULLTEXT01.pdf.

5.      H. Abdulsattar, M. R. K. Siam, and H. Wang, “Characterisation of the impacts of autonomous driving on highway capacity in a mixed traffic environment: An agent-based approach,” IET Intell. Transp. Syst., vol. 14, no. 9, pp. 1132–1141, 2020, doi: 10.1049/iet-its.2019.0285.

6.      F. Zheng, C. Liu, X. Liu, S. E. Jabari, and L. Lu, “Analyzing the impact of automated vehicles on uncertainty and stability of the mixed traffic flow,” Transp. Res. Part C Emerg. Technol., vol. 112, no. January, pp. 203–219, 2020, doi: 10.1016/j.trc.2020.01.017.

7.      A. Olia, S. Razavi, B. Abdulhai, and H. Abdelgawad, “Traffic capacity implications of automated vehicles mixed with regular vehicles,” J. Intell. Transp. Syst. Technol. Planning, Oper., vol. 22, no. 3, pp. 244–262, 2018, doi: 10.1080/15472450.2017.1404680.

8.      S. Narayanan, E. Chaniotakis, and C. Antoniou, “Factors affecting traffic flow efficiency implications of connected and autonomous vehicles: A review and policy recommendations,” Adv. Transp. Policy Plan., no. April, 2020, doi: 10.1016/bs.atpp.2020.02.004.

9.      M. Al-Turki, N. T. Ratrout, S. M. Rahman, and I. Reza, “Impacts of autonomous vehicles on traffic flow characteristics under mixed traffic environment: Future perspectives,” Sustain., vol. 13, no. 19, pp. 1–22, 2021, doi: 10.3390/su131911052.

10.   S. C. Calvert, W. J. Schakel, and J. W. C. van Lint, “Will automated vehicles negatively impact traffic flow?,” J. Adv. Transp., vol. 2017, 2017, doi: 10.1155/2017/3082781.

11.   Y. Liu, J. Guo, J. Taplin, and Y. Wang, “Characteristic analysis of mixed traffic flow of regular and autonomous vehicles using cellular automata,” J. Adv. Transp., vol. 2017, 2017, doi: 10.1155/2017/8142074.

12.   P. Sukennik, J. Lohmiller, and J. Schlaich, “Simulation-Based Forecasting the Impacts of Autonomous Driving,” Transp. Res. Procedia, vol. 00, 2018, [Online]. Available: www.sciencedirect.comwww.elsevier.com/locate/procedia2352-1465.

13.   Y. Zheng, J. Wang, and K. Li, “Smoothing Traffic Flow via Control of Autonomous Vehicles,” IEEE Internet Things J., vol. 7, no. 5, pp. 3882–3896, 2020, doi: 10.1109/JIOT.2020.2966506.

14.   F. Fakhrmoosavi, R. Saedi, A. Zockaie, and A. Talebpour, “Impacts of Connected and Autonomous Vehicles on Traffic Flow with Heterogeneous Drivers Spatially Distributed over Large-Scale Networks,” Transp. Res. Rec. J. Transp. Res. Board, vol. 2674, no. 10, pp. 817–830, 2020, doi: 10.1177/0361198120940997.

15.   N. K. Bailey and J. Kroll, “Simulation and Queueing Network Model Formulation of Mixed and Non-automated Traffic in Urban Settings Signature redacted Signature redacted Signature redacted,” 2016.

16.   L. Xiao and F. Gao, “A comprehensive review of the development of adaptive cruise control systems,” Veh. Syst. Dyn., vol. 48, no. 10, pp. 1167–1192, 2010, doi: 10.1080/00423110903365910.

17.   P. Sukennik and P. T. V Group, “Micro-simulation guide for,” no. 723201, pp. 1–29, 2020.

18.   R. Hoogendoorn, B. Van Arem, and S. Hoogendoorn, “Automated driving, traffic flow efficiency, and human factors,” Transp. Res. Rec., vol. 2422, no. 2422, pp. 113–120, 2014, doi: 10.3141/2422-13.

19.   Y. Li, Z. Li, H. Wang, W. Wang, and L. Xing, “Evaluating the safety impact of adaptive cruise control in traffic oscillations on freeways,” Accid. Anal. Prev., vol. 104, no. January, pp. 137–145, 2017, doi: 10.1016/j.aap.2017.04.025.

20.   B. S. Kerner, “Effect of Autonomous Driving on Traffic Breakdown in Mixed Traffic Flow: A Critical Mini-Review,” arXiv, no. April, pp. 1–94, 2020.

21.   H. U. Ahmed, Y. Huang, and P. Lu, “smart cities A Review of Car-Following Models and Modeling Tools for Human and Autonomous-Ready Driving Behaviors in Micro-Simulation,” pp. 314–335, 2021.

22.   V. Zeidler, H. S. Buck, L. Kautzsch, P. Vortisch, and C. M. Weyland, “Simulation of Autonomous Vehicles Based on Wiedemann’s Car Following Model in PTV Vissim,” 2019.

23.   J. VanderWerf, S. Shladover, and M. A. Miller, “Conceptual Development and Performance Assessment for the Deployment Staging of Advanced Vehicle Control and Safety Systems,” Calif. PATH Res. Rep., p. 147, 2004, [Online]. Available: https://trid.trb.org/view.aspx?id=1157086.

24.   B. Van Arem, C. J. G. Van Driel, and R. Visser, “The impact of cooperative adaptive cruise control on traffic-flow characteristics,” IEEE Trans. Intell. Transp. Syst., vol. 7, no. 4, pp. 429–436, 2006, doi: 10.1109/TITS.2006.884615.

25.   A. Kesting, M. Treiber, and D. Helbing, “Enhanced intelligent driver model to access the impact of driving strategies on traffic capacity,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 368, no. 1928, pp. 4585–4605, 2010, doi: 10.1098/rsta.2010.0084.

26.   K. Jerath and S. N. Brennan, “Analytical prediction of self-organized traffic jams as a function of increasing ACC penetration,” IEEE Trans. Intell. Transp. Syst., vol. 13, no. 4, pp. 1782–1791, 2012, doi: 10.1109/TITS.2012.2217742.

27.   L. Zhao and J. Sun, “Simulation Framework for Vehicle Platooning and Car-following Behaviors Under Connected-vehicle Environment,” Procedia - Soc. Behav. Sci., vol. 96, no. Cictp, pp. 914–924, 2013, doi: 10.1016/j.sbspro.2013.08.105.

28.   V. Milanes, S. E. Shladover, J. Spring, C. Nowakowski, H. Kawazoe, and M. Nakamura, “Cooperative adaptive cruise control in real traffic situations,” IEEE Trans. Intell. Transp. Syst., vol. 15, no. 1, pp. 296–305, 2014, doi: 10.1109/TITS.2013.2278494.

29.   I. A. Ntousakis, I. K. Nikolos, and M. Papageorgiou, “On Microscopic Modelling of Adaptive Cruise Control Systems,” Transp. Res. Procedia, vol. 6, no. September, pp. 111–127, 2015, doi: 10.1016/j.trpro.2015.03.010.

30.   A. Talebpour and H. S. Mahmassani, “Influence of connected and autonomous vehicles on traffic flow stability and throughput,” Transp. Res. Part C Emerg. Technol., vol. 71, pp. 143–163, 2016, doi: 10.1016/j.trc.2016.07.007.

31.   D. Chen, S. Ahn, M. Chitturi, and D. A. Noyce, “Towards vehicle automation: Roadway capacity formulation for traffic mixed with regular and automated vehicles,” Transp. Res. Part B Methodol., vol. 100, pp. 196–221, 2017, doi: 10.1016/j.trb.2017.01.017.

32.   L. Ye and T. Yamamoto, “Modeling connected and autonomous vehicles in heterogeneous traffic flow,” Physica A, vol. 490, pp. 269–277, 2018, doi: 10.1016/j.physa.2017.08.015.

33.   R. E. Stern et al., “Dissipation of stop-and-go waves via control of autonomous vehicles: Field experiments,” Transp. Res. Part C Emerg. Technol., vol. 89, pp. 205–221, 2018, doi: 10.1016/j.trc.2018.02.005.

34.   J. Mena-Oreja, J. Gozalvez, and M. Sepulcre, “Effect of the Configuration of Platooning Maneuvers on the Traffic Flow under Mixed Traffic Scenarios,” IEEE Veh. Netw. Conf. VNC, vol. 2018-Decem, 2019, doi: 10.1109/VNC.2018.8628381.

35.   F. Zheng, L. Lu, R. Li, X. Liu, and Y. Tang, “Traffic Oscillation using Stochastic Lagrangian Dynamics: Simulation and Mitigation via Control of Autonomous Vehicles,” Transp. Res. Rec., vol. 2673, no. 7, pp. 1–11, 2019, doi: 10.1177/0361198119844455.

36.   Y. J. Zhou, H. B. Zhu, M. M. Guo, and J. L. Zhou, “Impact of CACC vehicles’ cooperative driving strategy on mixed four-lane highway traffic flow,” Phys. A Stat. Mech. its Appl., vol. 540, p. 122721, 2020, doi: 10.1016/j.physa.2019.122721.

37.   S. Jin, D. H. Sun, M. Zhao, Y. Li, and J. Chen, “Modeling and stability analysis of mixed traffic with conventional and connected automated vehicles from cyber physical perspective,” Phys. A Stat. Mech. its Appl., vol. 551, no. 174, p. 124217, 2020, doi: 10.1016/j.physa.2020.124217.

38.   F. Zheng, C. Liu, X. Liu, S. E. Jabari, and L. Lu, “Analyzing the impact of automated vehicles on uncertainty and stability of the mixed traffic flow,” Transp. Res. Part C Emerg. Technol., vol. 112, no. June 2019, pp. 203–219, 2020, doi: 10.1016/j.trc.2020.01.017.

39.   P. Tientrakool, Y. C. Ho, and N. F. Maxemchuk, “Highway capacity benefits from using vehicle-to-vehicle communication and sensors for collision avoidance,” IEEE Veh. Technol. Conf., pp. 0–4, 2011, doi: 10.1109/VETECF.2011.6093130.

40.   Z. Cao, L. Lu, C. Chen, and X. U. Chen, “Modeling and simulating urban traffic flow mixed with regular and connected vehicles,” pp. 1–9, 2021, doi: 10.1109/ACCESS.2021.3050199.

41.   B. Friedrich, “on Traffic,” pp. 317–334, 2016, doi: 10.1007/978-3-662-48847-8.

42.   S. Le Vine, A. Zolfaghari, and J. Polak, “Autonomous cars: The tension between occupant experience and intersection capacity,” Transp. Res. Part C Emerg. Technol., vol. 52, pp. 1–14, 2015, doi: 10.1016/j.trc.2015.01.002.

43.   M. W. Levin and S. D. Boyles, “A multiclass cell transmission model for shared human and autonomous vehicle roads,” Transp. Res. Part C, vol. 62, pp. 103–116, 2016, doi: 10.1016/j.trc.2015.10.005.

44.   M. Maurer, J. C. Gerdes, B. Lenz, and H. Winner, Autonomous driving: Technical, legal and social aspects. 2016.

45.   A. B. Elvarsson, “Modelling urban driving and stopping behavior for automated vehicles,” Semester Proj. IVT, ETH Zürich, Zürich, no. June, pp. 1–43, 2017.

46.   P. Liu and W. D. Fan, “Exploring the impact of connected and autonomous vehicles on mobility and environment at signalized intersections through to-vehicle ( I2V ) communications,” 2021, doi: 10.1080/03081060.2020.1868088.

47.   L. Song, W. D. Fan, and P. Liu, “Exploring the effects of connected and automated vehicles at fixed and actuated signalized intersections with different market penetration rates,” 2021, doi: 10.1080/03081060.2021.1943129.

48.   M. Obaid, “Macroscopic Traffic Simulation of Autonomous Vehicle Effects,” pp. 187–196, 2021.

49.   L. Ye, T. Yamamoto, and T. Morikawa, “Heterogeneous Traffic Flow Dynamics under Various Penetration Rates of Connected and Autonomous Vehicle,” IEEE Conf. Intell. Transp. Syst. Proceedings, ITSC, vol. 2018-Novem, pp. 555–559, 2018, doi: 10.1109/ITSC.2018.8569975.

50.   Makridis Michail, Mattas Konstantinos, Ciuffo Biagio, Alonso Raposo Maria, Toledo Tomer, and Thiel Christian, “Connected and Automated Vehicles on a freeway scenario. Effect on traffic congestion and network capacity,” 2018, doi: 10.5281/zenodo.1483132.

51.   Z. Zhong, E. E. Lee, M. Nejad, and J. Lee, “Influence of CAV clustering strategies on mixed traffic flow characteristics: An analysis of vehicle trajectory data,” Transp. Res. Part C Emerg. Technol., vol. 115, 2020, doi: 10.1016/j.trc.2020.102611.

52.   Roads and Highways Department, “Calculation of Traffic Signal Timings - Webster’s Method,” pp. 16–22, 2001.

53.   M. Fellendorf and P. Vortisch, Barceló - 2010 - Fundamentals of traffic simulation.pdf. 2010.

54.   PTV, “Connected Autonomous Vehicles Context / Overview,” pp. 1–44, 2017.

55.   Y. Dinar, “Impact of Connected and/or Autonomous Vehicles in Mixed Traffic,” p. 138, 2020, [Online]. Available: https://mediatum.ub.tum.de/doc/1597450/1597450.pdf.

56.   M. Khashayarfard and H. Nassiri, “Studying the Simultaneous Effect of Autonomous Vehicles and Distracted Driving on Safety at Unsignalized Intersections,” J. Adv. Transp., vol. 2021, 2021, doi: 10.1155/2021/6677010.

57.   N. Raju and H. Farah, “Evolution of Traffic Microsimulation and Its Use for Modeling Connected and Automated Vehicles,” J. Adv. Transp., vol. 2021, 2021, doi: 10.1155/2021/2444363.

58.   F. Rosique, P. J. Navarro, C. Fernández, and A. Padilla, “A systematic review of perception system and simulators for autonomous vehicles research,” Sensors (Switzerland), vol. 19, no. 3, 2019, doi: 10.3390/s19030648.

59.   E. Şentürk Berktaş and S. Tanyel, “Effect of Autonomous Vehicles on Performance of Signalized Intersections,” J. Transp. Eng. Part A Syst., vol. 146, no. 2, p. 04019061, 2020, doi: 10.1061/jtepbs.0000297.

60.   M. Massar, I. Reza, S. M. Rahman, S. M. H. Abdullah, A. Jamal, and F. S. Al-Ismail, “Impacts of autonomous vehicles on greenhouse gas emissions—positive or negative?,” Int. J. Environ. Res. Public Health, vol. 18, no. 11, 2021, doi: 10.3390/ijerph18115567.

61.   T. Zhang et al., “Automated vehicle acceptance in China: Social influence and initial trust are key determinants,” Transp. Res. Part C Emerg. Technol., vol. 112, pp. 220–233, Mar. 2020, doi: 10.1016/J.TRC.2020.01.027.

62.   S. M. Mousavi, O. A. Osman, D. Lord, K. K. Dixon, and B. Dadashova, “Investigating the safety and operational benefits of mixed traffic environments with different automated vehicle market penetration rates in the proximity of a driveway on an urban arterial,” Accid. Anal. Prev., vol. 152, no. January, p. 105982, 2021, doi: 10.1016/j.aap.2021.105982.