Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science

SPECIALIST SYSTEM IN FLOW PATTERN IDENTIFICATION USing ARTIFICIAL NEURAL NETWORKS


DOI: 10.5937/jaes0-40309 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 21 article 1072 pages: 285-299

July Andrea Gomez Camperos*
Mechanical Engineering Department, Universidad Francisco de Paula Santander, Seccional Ocaña, Vía Acol-sure, Sede el Algodonal Ocaña, Ocaña 546552, Colombia

Carlos Mauricio Ruiz Diaz
Mechanical Engineering Department, Industrial Multiphase Flow Laboratory (LEMI), São Carlos School of Engineering (ESSC), University of São Paulo (USP), Av. Trab. São Carlense, 400 - Parque Arnold Schimidt, São Carlos - SP, 13566-590, Brazil

Marlon Mauricio Hernández Cely
Control and Automation Engineering, Engineering Center, Federal University of Pelotas, Rua Benjamin Con-stant, n° 989, Porto, Pelotas - RS, 96010-020, Brazil

In this work, an application of artificial intelligence in the oils & gas industry is developed to iden-tify flow patterns in horizontal and vertical pipes of two-phase flow of oil and water, normalizing the word information and converting it to numerical values through the development of an artifi-cial neural network, whose input layer is composed of the surface velocities of each fluid, the ve-locity of the mixture, the volumetric fraction of the substances, diameter and the inclination of pipelines and the oil viscosity. The Artificial Neural Networks (ANN) has two hidden layers composed of 45 neurons. The database with which the model was trained, validated, and tested has 6993 rows of information corresponding to the inputs of the intelligent system and particular-ized for annular flow in horizontal pipes and DO/W in vertical pipelines. Notice that the infor-mation was obtained after re-engineering the information presented by 12 and 18 authors for hor-izontal and vertical piping, respectively. Finally, the mean square error obtained by the model was around 1.38%, with a maximum coefficient of determination of 0.79.

View article

1.      H. F. Velasco Peña and O. M. H. Rodriguez, “Applications of wire-mesh sensors in multiphase flows,” Flow Meas. Instrum., vol. 45, pp. 255–273, 2015, doi: 10.1016/j.flowmeasinst.2015.06.024.

2.      Y. Mi, M. Ishii, and L. H. Tsoukalas, “Vertical two-phase flow identification using advanced instrumentation and neural networks,” Nucl. Eng. Des., vol. 184, no. 2–3, pp. 409–420, 1998, doi: 10.1016/S0029-5493(98)00212-X.

3.      Y. Mi, M. Ishii, and L. H. Tsoukalas, “Flow regime identification methodology with neural networks and two-phase flow models,” Nucl. Eng. Des., vol. 204, no. 1–3, pp. 87–100, 2001, doi: 10.1016/S0029-5493(00)00325-3.

4.      J. E. Juliá, Y. Liu, S. Paranjape, and M. Ishii, “Upward vertical two-phase flow local flow regime identification using neural network techniques,” Nucl. Eng. Des., vol. 238, no. 1, pp. 156–169, 2008, doi: 10.1016/j.nucengdes.2007.05.005.

5.      C. Tan, F. Dong, and M. Wu, “Identification of gas/liquid two-phase flow regime through ERT-based measurement and feature extraction,” Flow Meas. Instrum., vol. 18, no. 5–6, pp. 255–261, 2007, doi: 10.1016/j.flowmeasinst.2007.08.003.

6.      E. S. Rosa, R. M. Salgado, T. Ohishi, and N. Mastelari, “Performance comparison of artificial neural networks and expert systems applied to flow pattern identification in vertical ascendant gas-liquid flows,” Int. J. Multiph. Flow, vol. 36, no. 9, pp. 738–754, 2010, doi: 10.1016/j.ijmultiphaseflow.2010.05.001.

7.      R. Banasiak et al., “Study on two-phase flow regime visualization and identification using 3D electrical capacitance tomography and fuzzy-logic classification,” Int. J. Multiph. Flow, vol. 58, no. January, pp. 1–14, 2014, doi: 10.1016/j.ijmultiphaseflow.2013.07.003.

8.      H. Shaban and S. Tavoularis, “Identification of flow regime in vertical upward air-water pipe flow using differential pressure signals and elastic maps,” Int. J. Multiph. Flow, vol. 61, no. May, pp. 62–72, 2014, doi: 10.1016/j.ijmultiphaseflow.2014.01.009.

9.      H. Shaban and S. Tavoularis, “Measurement of gas and liquid flow rates in two-phase pipe flows by the application of machine learning techniques to differential pressure signals,” Int. J. Multiph. Flow, vol. 67, no. December, pp. 106–117, 2014, doi: 10.1016/j.ijmultiphaseflow.2014.08.012.

10.   L. Wang, J. Liu, Y. Yan, X. Wang, and T. Wang, “Gas-Liquid Two-Phase Flow Measurement Using Coriolis Flowmeters Incorporating Artificial Neural Network, Support Vector Machine, and Genetic Programming Algorithms,” IEEE Trans. Instrum. Meas., vol. 66, no. 5, pp. 852–868, 2017, doi: 10.1109/TIM.2016.2634630.

11.   A. M. Quintino, D. L. L. N. da Rocha, R. Fonseca Jr., and O. M. H. Rodriguez, “Flow Pattern Transition in Pipes Using Data-Driven and Physics-Informed Machine Learning,” J. Fluids Eng., pp. 1–12, 2020, doi: 10.1115/1.4048876.

12.   A. Van Der Spek and A. Thomas, “Neural-net identification of flow regime with band spectra of flow-generated sound,” SPE Reserv. Eval. Eng., vol. 2, no. 6, pp. 489–498, 1999, doi: 10.2118/59067-PA.

13.   R. Hanus, M. Zych, M. Kusy, M. Jaszczur, and L. Petryka, “Identification of liquid-gas flow regime in a pipeline using gamma-ray absorption technique and computational intelligence methods,” Flow Meas. Instrum., vol. 60, no. April, pp. 17–23, 2018, doi: 10.1016/j.flowmeasinst.2018.02.008.

14.   L. Zhang and H. Wang, “Identification of oil-gas two-phase flow pattern based on SVM and electrical capacitance tomography technique,” Flow Meas. Instrum., vol. 21, no. 1, pp. 20–24, 2010, doi: 10.1016/j.flowmeasinst.2009.08.006.

15.   M. Meribout, N. Al-Rawahi, A. Al-Naamany, A. Al-Bimani, K. Al-Busaidi, and A. Meribout, “Integration of impedance measurements with acoustic measurements for accurate two phase flow metering in case of high water-cut,” Flow Meas. Instrum., vol. 21, no. 1, pp. 8–19, 2010, doi: 10.1016/j.flowmeasinst.2009.09.002.

16.   S. Azizi, M. M. Awad, and E. Ahmadloo, “Prediction of water holdup in vertical and inclined oil-water two-phase flow using artificial neural network,” Int. J. Multiph. Flow, vol. 80, no. April, pp. 181–187, 2016, doi: 10.1016/j.ijmultiphaseflow.2015.12.010.

17.   R. Shirley, D. P. Chakrabarti, and G. Das, “LIQUID-LIQUID TWO-PHASE FLOW,” vol. 199, no. 12, pp. 20–22, 2012.

18.   C. M. R. Diaz, “Caracterización hidrodinámica de flujos multifase empleando técnicas de inteligencia artificial,” Universidad Industrial de Santander Facultad, 2021.

19.   D. P. Chakrabarti, G. Das, and S. Ray, “Pressure Drop in Liquid-liquid Two Phase Horizontal Flow: Experiment and Prediction D.,” Chem. Eng. …, pp. 20–22, 2005.

20.   D. P. Chakrabarti, G. Das, and P. K. Das, “Identification of stratified liquid-liquid flow through horizontal pipes by a non-intrusive optical probe,” Chem. Eng. Sci., vol. 62, no. 7, pp. 1861–1876, 2007, doi: 10.1016/j.ces.2006.11.056.

21.   H. L. Hu, J. Dong, J. Zhang, Y. J. Cheng, and T. M. Xu, “Identification of gas/solid two-phase flow regimes using electrostatic sensors and neural-network techniques,” Flow Meas. Instrum., vol. 22, no. 5, pp. 482–487, 2011, doi: 10.1016/j.flowmeasinst.2011.07.004.

22.   G. H. Roshani, E. Nazemi, and M. M. Roshani, “Intelligent recognition of gas-oil-water three-phase flow regime and determination of volume fraction using radial basis function,” Flow Meas. Instrum., vol. 54, no. April, pp. 39–45, 2017, doi: 10.1016/j.flowmeasinst.2016.10.001.

23.   A. Karami, G. H. Roshani, E. Nazemi, and S. Roshani, “Enhancing the performance of a dual-energy gamma ray based three-phase flow meter with the help of grey wolf optimization algorithm,” Flow Meas. Instrum., vol. 64, no. December, pp. 164–172, 2018, doi: 10.1016/j.flowmeasinst.2018.10.015.

24.   C. M. Salgado, C. M. N. A. Pereira, R. Schirru, and L. E. B. Brandão, “Flow regime identification and volume fraction prediction in multiphase flows by means of gamma-ray attenuation and artificial neural networks,” Prog. Nucl. Energy, vol. 52, no. 6, pp. 555–562, 2010, doi: 10.1016/j.pnucene.2010.02.001.

25.   H. Wu, “International Journal of Multiphase Flow Intelligent identification system of flow regime of oil – gas – water multiphase flow,” vol. 27, no. 3, pp. 1–7, 2001.

26.   C. M. Ruiz-Diaz, M. M. Hernández-Cely, and O. A. González-Estrada, “Modelo predictivo para la identificación de la fracción volumétrica en flujo bifásico,” Cienc. en Desarro., vol. 12, no. 2, pp. 49–55, 2021, doi: 10.19053/01217488.v12.n2.2021.13417.

27.   S. Fu, Z. Li, K. Liu, S. Din, M. Imran, and X. Yang, “Model Compression for IoT Applications in Industry 4.0 via Multiscale Knowledge Transfer,” IEEE Trans. Ind. Informatics, vol. 16, no. 9, pp. 6013–6022, 2020, doi: 10.1109/TII.2019.2953106.

28.   J. Dalzochio et al., “Machine learning and reasoning for predictive maintenance in Industry 4.0: Current status and challenges,” Comput. Ind., vol. 123, p. 103298, 2020, doi: 10.1016/j.compind.2020.103298.

29.   P. K. Malik et al., “Industrial Internet of Things and its Applications in Industry 4.0: State of The Art,” Comput. Commun., vol. 166, no. November 2020, pp. 125–139, 2021, doi: 10.1016/j.comcom.2020.11.016.

30.   S. Cai, H. Toral, J. Qiu, and J. S. Archer, “Neural network based objective flow regime identification in airwater two phase flow,” Can. J. Chem. Eng., vol. 72, no. 3, pp. 440–445, 1994, doi: 10.1002/cjce.5450720308.

31.   H. Yan, Y. H. Liu, and C. T. Liu, “Identification of flow regimes using back-propagation networks trained on simulated data based on a capacitance tomography sensor,” Meas. Sci. Technol., vol. 15, no. 2, pp. 432–436, 2004, doi: 10.1088/0957-0233/15/2/017.

32.   P. Wiedemann, A. Döß, E. Schleicher, and U. Hampel, “Fuzzy flow pattern identification in horizontal air-water two-phase flow based on wire-mesh sensor data,” Int. J. Multiph. Flow, vol. 117, pp. 153–162, 2019, doi: 10.1016/j.ijmultiphaseflow.2019.05.004.

33.   M. M. F. Figueiredo, J. L. Goncalves, A. M. V. Nakashima, A. M. F. Fileti, and R. D. M. Carvalho, “The use of an ultrasonic technique and neural networks for identification of the flow pattern and measurement of the gas volume fraction in multiphase flows,” Exp. Therm. Fluid Sci., vol. 70, pp. 29–50, Jan. 2016, doi: 10.1016/j.expthermflusci.2015.08.010.

34.   T. Sunder Raj, D. P. Chakrabarti, and G. Das, “Liquid-liquid stratified flow through horizontal conduits,” Chem. Eng. Technol., vol. 28, no. 8, pp. 899–907, 2005, doi: 10.1002/ceat.200500067.

35.   B. Grassi, D. Strazza, and P. Poesio, “Experimental validation of theoretical models in two-phase high-viscosity ratio liquid–liquid flows in horizontal and slightly inclined pipes,” Int. J. Multiph. Flow, vol. 34, no. 10, pp. 950–965, Oct. 2008, doi: 10.1016/j.ijmultiphaseflow.2008.03.006.

36.   P. Abduvayt, R. Manabe, T. Watanabe, and N. Arihara, “Analisis of oil-water flow tests in horizontal, hilly-terrain, and vertical pipes,” Proc. - SPE Annu. Tech. Conf. Exhib., pp. 1335–1347, 2004, doi: 10.2523/90096-ms.

37.   J. Cai, C. Li, X. Tang, F. Ayello, S. Richter, and S. Nesic, “Experimental study of water wetting in oil-water two phase Flow-Horizontal flow of model oil,” Chem. Eng. Sci., vol. 73, pp. 334–344, 2012, doi: 10.1016/j.ces.2012.01.014.

38.   A. Al-Sarkhi, E. Pereyra, I. Mantilla, and C. Avila, “Dimensionless oil-water stratified to non-stratified flow pattern transition,” J. Pet. Sci. Eng., vol. 151, no. September 2016, pp. 284–291, Mar. 2017, doi: 10.1016/j.petrol.2017.01.016.

39.   J. Shi, L. Lao, and H. Yeung, “Water-lubricated transport of high-viscosity oil in horizontal pipes: The water holdup and pressure gradient,” Int. J. Multiph. Flow, vol. 96, pp. 70–85, 2017, doi: 10.1016/j.ijmultiphaseflow.2017.07.005.

40.   T. Al-Wahaibi et al., “Experimental investigation on flow patterns and pressure gradient through two pipe diameters in horizontal oil–water flows,” J. Pet. Sci. Eng., vol. 122, pp. 266–273, Oct. 2014, doi: 10.1016/j.petrol.2014.07.019.

41.   A. Dasari, A. B. Desamala, A. K. Dasmahapatra, and T. K. Mandal, “Experimental studies and probabilistic neural network prediction on flow pattern of viscous oil-water flow through a circular horizontal pipe,” Ind. Eng. Chem. Res., vol. 52, no. 23, pp. 7975–7985, 2013, doi: 10.1021/ie301430m.

42.   R. Ibarra, I. Zadrazil, C. N. Markides, and O. K. Matar, “Towards a Universal Dimensionless Map of Flow Regime,” 11th Int. Conf. Heat Transf. Fluid Mech. Thermodyn., no. July, 2015.

43.   M. Nädler and D. Mewes, “Flow induced emulsification in the flow of two immiscible liquids in horizontal pipes,” Int. J. Multiph. Flow, vol. 23, no. 1, pp. 55–68, 1997, doi: 10.1016/s0301-9322(96)00055-9.

44.   O. M. H. Rodriguez and R. V. A. Oliemans, “Experimental study on oil–water flow in horizontal and slightly inclined pipes,” Int. J. Multiph. Flow, vol. 32, no. 3, pp. 323–343, Mar. 2006, doi: 10.1016/j.ijmultiphaseflow.2005.11.001.

45.   J. Shi and H. Yeung, “Characterization of liquid-liquid flows in horizontal pipes,” AIChE J., vol. 63, no. 3, pp. 1132–1143, 2017, doi: 10.1002/aic.15452.

46.   A. Wegmann and P. Rudolf von Rohr, “Two phase liquid-liquid flows in pipes of small diameters,” Int. J. Multiph. Flow, vol. 32, no. 8, pp. 1017–1028, 2006, doi: 10.1016/j.ijmultiphaseflow.2006.04.001.

47.   A. C. Bannwart, O. M. H. Rodriguez, C. H. M. de Carvalho, I. S. Wang, and R. M. O. Vara, “Flow Patterns in Heavy Crude Oil-Water Flow,” J. Energy Resour. Technol., vol. 126, no. 3, pp. 184–189, Sep. 2004, doi: 10.1115/1.1789520.

48.   M. Du, N.-D. Jin, Z.-K. Gao, Z.-Y. Wang, and L.-S. Zhai, “Flow pattern and water holdup measurements of vertical upward oil–water two-phase flow in small diameter pipes,” Int. J. Multiph. Flow, vol. 41, pp. 91–105, May 2012, doi: 10.1016/j.ijmultiphaseflow.2012.01.007.

49.   J. Flores, X. Chen, and J. Brill, “Characterization of Oil-Water Flow Patterns in Vertical and Deviated Wells,” in Proceedings of SPE Annual Technical Conference and Exhibition, Oct. 1997, vol. 1, pp. 55–64, doi: 10.2523/38810-MS.

50.   T. Ganat, S. Ridha, M. Hairir, J. Arisa, and R. Gholami, “Experimental investigation of high-viscosity oil–water flow in vertical pipes: flow patterns and pressure gradient,” J. Pet. Explor. Prod. Technol., vol. 9, no. 4, pp. 2911–2918, Dec. 2019, doi: 10.1007/s13202-019-0677-y.

51.   G. W. Govier, G. A. Sullivan, and R. K. Wood, “The upward vertical flow of oil-water mixtures,” Can. J. Chem. Eng., vol. 39, no. 2, pp. 67–75, Apr. 1961, doi: 10.1002/cjce.5450390204.

52.   Y. F. Han, N. D. Jin, L. S. Zhai, H. X. Zhang, and Y. Y. Ren, “Flow pattern and holdup phenomena of low velocity oil-water flows in a vertical upward small diameter pipe,” J. Pet. Sci. Eng., vol. 159, no. May, pp. 387–408, Nov. 2017, doi: 10.1016/j.petrol.2017.09.052.

53.   A. R. Hasan and C. S. Kabir, “A New Model for Two-Phase Oil/Water Flow: Production Log Interpretation nd Tubular Calculations,” SPE Prod. Eng., vol. 5, no. 02, pp. 193–199, May 1990, doi: 10.2118/18216-PA.

54.   A. R. Hasan and C. S. Kabir, “A simplified model for oil/water flow in vertical and deviated wellbores,” SPE Prod. Facil., vol. 14, no. 1, pp. 56–62, 1999, doi: 10.2118/54131-PA.

55.   A. K. Jana, G. Das, and P. K. Das, “Flow regime identification of two-phase liquid–liquid upflow through vertical pipe,” Chem. Eng. Sci., vol. 61, no. 5, pp. 1500–1515, Mar. 2006, doi: 10.1016/j.ces.2005.09.001.

56.   A. K. Jana, P. Ghoshal, G. Das, and P. K. Das, “An Analysis of Pressure Drop and Holdup for Liquid-Liquid Upflow through Vertical Pipes,” Chem. Eng. Technol., vol. 30, no. 7, pp. 920–925, Jul. 2007, doi: 10.1002/ceat.200700033.

57.   J. Guo et al., “Heavy oil-water flow patterns in a small diameter vertical pipe under high temperature/pressure conditions,” J. Pet. Sci. Eng., vol. 171, pp. 1350–1365, Dec. 2018, doi: 10.1016/j.petrol.2018.08.021.

58.   R. A. Mazza and F. K. Suguimoto, “Experimental investigations of kerosene-water two-phase flow in vertical pipe,” J. Pet. Sci. Eng., vol. 184, p. 106580, Jan. 2020, doi: 10.1016/j.petrol.2019.106580.

59.   K. Mydlarz-Gabryk, M. Pietrzak, and L. Troniewski, “Study on oil–water two-phase upflow in vertical pipes,” J. Pet. Sci. Eng., vol. 117, pp. 28–36, May 2014, doi: 10.1016/j.petrol.2014.03.007.

60.   O. M. H. Rodriguez and A. C. Bannwart, “Experimental study on interfacial waves in vertical core flow,” J. Pet. Sci. Eng., vol. 54, no. 3–4, pp. 140–148, 2006, doi: 10.1016/j.petrol.2006.07.007.

61.   J. Xu, D. Li, J. Guo, and Y. Wu, “Investigations of phase inversion and frictional pressure gradients in upward and downward oil–water flow in vertical pipes,” Int. J. Multiph. Flow, vol. 36, no. 11–12, pp. 930–939, Nov. 2010, doi: 10.1016/j.ijmultiphaseflow.2010.08.007.

62.   Y. Yang et al., “Oil-Water flow patterns, holdups and frictional pressure gradients in a vertical pipe under high temperature/pressure conditions,” Exp. Therm. Fluid Sci., vol. 100, no. September 2018, pp. 271–291, Jan. 2019, doi: 10.1016/j.expthermflusci.2018.09.013.

63.   D. Zhao, L. Guo, X. Hu, X. Zhang, and X. Wang, “Experimental study on local characteristics of oil-water dispersed flow in a vertical pipe,” Int. J. Multiph. Flow, vol. 32, no. 10–11, pp. 1254–1268, 2006, doi: 10.1016/j.ijmultiphaseflow.2006.06.004.

64.   G. Jiang, H.-Q. Gao, C.-P. Wu, and G. Cybenko, “Convergence Analysis of Discretization Procedure in Q-Learning,” IFAC Proc. Vol., vol. 32, no. 2, pp. 8551–8556, Jul. 1999, doi: 10.1016/S1474-6670(17)57458-3.

65.   J. L. Trallero, C. Sarica, and J. P. Brill, “A Study of Oil-Water Flow Patterns in Horizontal Pipes,” SPE Prod. Facil., vol. 12, no. 03, pp. 165–172, Aug. 1997, doi: 10.2118/36609-PA.