Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science


DOI: 10.5937/jaes0-29558 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 20 article 931 pages: 293-299

Adhitya Yoga Purnama*
Department of Civil Engineering, Vocational College, Universitas Gadjah Mada, Yogyakarta, Indonesia

Devi Oktaviana Latif
Department of Civil Engineering, Vocational College, Universitas Gadjah Mada, Yogyakarta, Indonesia

Aswin Wahyu Kurniawan
Department of Civil and Environmental Engineering, Faculty of Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia

Meilani Adriyati
Department of Civil and Structural Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan

Slope failure in the well site area in Aceh, Indonesia caused the termination of gas distribution and resulted in financial loss. Based on the visual observation, the slope failed due to the high intensity of rainfall, which influenced the reduction of soil shear strength of the slope embankment. Furthermore, the slope reinforcement has been damaged due to the collapsed trees on the slope embankment. Slope stability analysis was carried out by using a two-dimensional (2D) numerical method in several section areas to determine the appropriate slope reinforcement or countermeasures. Based on the 2D slope stability analysis, the Building Information Modeling (BIM) was performed by using a 3D projection drawing to evaluate the detailed information of the area which was applied by the countermeasures system. This method describes the total area and material quantity covered by the countermeasure system to determine the information material quantity and land acquisition area. Furthermore, the implementation of BIM in this study provides detailed information during the construction process to ensure comprehensive landslide mitigation.

View article

1. Yoshida, Y., Kuwano, J., Kuwano, R. (1991). Effects of saturation on shear strength of soils. Soils and Foundations, vol. 31, no. 1, 181-186, DOI: 10.3208/sandf1972.31.181

2. Mizal-Azzmi, N., Mohd-Noor, N., Jamaludin, N. (2011). Geotechnical approaches for slope stabilization in residential area. The 2nd International Building Control Conference 2011, 474-482, DOI: 10.1016/j.proeng.2011.11.190

3. Kahlen, F.J., Flumerfelt, S., Alves, A. (2017). Transdisciplinary Perspectives on Complex Systems: New Findings and Approaches. Springer International Publishing, Switzerland, DOI: 10.1007/978-3-319-38756-7

4. Berdigylyjov, M., Popa, H. (2019). The Implementation and role of geotechnical data in BIM process. Procedia Engineering, vol.143, 734-741, DOI: 10.1016/j.proeng.2016.06.115

5. Antoljak, S. (2020). Geotechnical BIM in 2020. Geo-Congress 2020 GSP 318, 933-941, DOI: 10.1061/9780784482810.097

6. Howard, A. S., Hatton, B. W., Reitsma, F., and Lawrie, K. I. G. (2009). Developing a geoscience knowledge framework for a national geological survey organization. Computers & Geosciences, vol. 35, no. 4, 820-835, DOI: 10.1016/j.cageo.2008.06.004

7. Feng, M., Liu, S., Euliss, N. H., Young, C., and Mushet, D. M. (2011). Prototyping an online wetland ecosystem services model using open model sharing standards. Environmental Modelling & Software, vol.26, 458-468, DOI: 10.1016/j.envsoft.2010.10.008

8. Kumar, S. V., Peters-Lidard, C. D., Tian, Y., Houser, P. R., Geiger, J., Olden, S., Lighty, L., Eastman, J. L., Doty, B., Dirmeyer, P., Adams, J., Mitchell, K., Wood, E. F., and Sheffield, J. (2006). Land information system: An interoperable framework for high resolution land surface modeling. Environmental Modelling & Software, vol.21, No.10, 1402-1415, DOI: 10.1016/j.envsoft.2005.07.004

9. Tarboton, D. G., Maidment, D., Zaslavsky, I., Ames, D., Goodall, J., Hooper, R. P., Horsburgh, J., Valentine, D., Whiteaker, T., and Schreuders, K. (2011). Data interoperability in the hydrologic sciences. Environmental Information Management Conference, Santa Barbara.

10. Werlang, R., Abel, M., Perrin, M., Carbonera, J. L., and Fiorini, S. R. (2014). Ontological foundations for petroleum application modeling. The Petroleum Network Education Conference, Houston.

11. Kim, S., Gultekin-Bicer, P. (2018). An Infrastructure for Geotechnical Building Information Modeling (BIM). IFCEE 2018 GSP 294, 211-218, DOI: 10.1061/9780784481578.022

12. Morin, G. Geotechnical BIM: Applying BIM Principles to the Subsurface, from, accessed on 2020-10-08.

13. BSN, Badan Standarisasi Nasional. SNI 8460:2017 Pesyaratan Perancangan Geoteknik, from, accessed on 2020-10-08.

14. Azizi, F. (2000). Applied Analysis in Geotechnics. E & FN Spon, London.

15. Wijaya, T., Hidayat, R. (2007). Survey Pendahuluan Bitumen Padat di Daerah Aceh Barat Kabupaten Aceh Barat Provinsi. Nanggroe Aceh Darusalam. Proceeding Pemaparan Hasil Kegiatan Lapangan dan Non Lapangan Pusat Sumber Daya Geologi. Aceh.

16. Bowles, J. E. (1988). Analisa dan Desain Pondasi I Edisi Keempat Jilid I. Erlangga, Jakarta.

17. Bowles, J. E. (1997). Foundation Analysis and Design. McGraw-Hill Kogakusha, Tokyo.

18. Terzaghi, K., Peck, R. B. (1967). Soil Mechanics in Engineering Practice 2 nd Edition. John Wiley and Sons, New York.

19. Karol, R, H. (1960). Soils and Soil Engineering. Prentice Hall, New Jersey.

20. Look, B. G. (2007). Handbook of Geotechnical Investigation and Design Tables. Taylor and Francis Group, London.

21. BSN, Badan Standarisasi Nasional. SNI 03-2827:1992 Metode Pengujian Lapangan dengan alat sondir, from, accessed on 2020-10-08.

22. BSN, Badan Standarisasi Nasional. SNI 1738:2011 Cara Uji CBR (California Bearing Ratio, from, accessed on 2020-10-08.