Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science


DOI: 10.5937/jaes0-30849 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 20 article 906 pages: 79-84

Baiti Hidayati
University of Sriwijaya, Faculty of Engineering, South Sumatera, Indonesia

Riman Sipahutar*
University of Sriwijaya, Faculty of Engineering, Mechanical Engineering Department, South Sumatera, Indonesia

Irwin Bizzy
University of Sriwijaya, Faculty of Engineering, Mechanical Engineering Department, South Sumatera, Indonesia

Muhammad Faizal
University of Sriwijaya, Faculty of Engineering, Chemical Engineering Department, South Sumatera, Indonesia

Liquid smoke increased in demand by the community because it is made from environmentally friendly waste can directly reduce environmental pollution. The smoke condensing process that is carried out conventionally using water can be continuously replaced using a refrigeration system, the smoke condensation process can be carried out using controlled low-temperature air, this can minimize machine space and energy. In this study, an analysis of variations in air temperature will be carried out to maximize the productivity of liquid smoke. The raw material for palm kernel shell is -4 + 5 mesh with cabin temperature variations of 10-15°C, 5-10°C, and 0-5°C and pyrolysis temperature of 300-400°C. Based on the research results obtained maximum results at a temperature of 0-5°C with 23.6% liquid smoke, 3.7% tar, 63.8% charcoal, and 8.9% gas. The test results of chemical compounds, liquid smoke has an average phenol value of 56.59%. The lower the air temperature used to condense the smoke, the maximum liquid smoke will be and the less gas escapes to the air. It can directly reduce air pollution in the process of making liquid smoke.

View article

1. J. Elisabeth and P. S. Ginting. (2003). Utilization of palm oil industry by-products as beef cattle feed ingredients. Oil Palm-Cattle Integr. Syst. Work. p. 110–119.

2. M. A. Shahputra and Z. Zen. (2018). Positive and Negative Impacts of Oil Palm Expansion in Indonesia and the Prospect to Achieve Sustainable Palm Oil. IOP Conf. Ser. Earth Environ. Sci., vol. 122, no. 1, 9–16, DOI: 10.1088/1755-1315/122/1/012008.

3. Fauziati, A. Priatni, and Y. Adiningsih. the effect of various pyrolisis temperature of liquid smoke from palm shells as latex coagulant. J. Ris. Teknol. Ind., p. 139–149.

4. V. Kumar, P. Binod, R. Sindhu, E. Gnansounou, and V. Ahluwalia. (2018). Bioconversion of pentose sugars to value added chemicals and fuels: Recent trends, challenges and possibilities. Bioresour. Technol., vol. 269, 443–451, DOI: 10.1016/j.biortech.2018.08.042.

5. H. M. Morgan et al. (2017). A review of catalytic microwave pyrolysis of lignocellulosic biomass for value-added fuel and chemicals. Bioresour. Technol., vol. 230, 12–121, DOI: 10.1016/j.biortech.2017.01.059.

6. C. L. Yiin, A. T. Quitain, S. Yusup, Y. Uemura, M. Sasaki, and T. Kida, (2018). Sustainable green pretreatment approach to biomass-to-energy conversion using natural hydro-low-transition-temperature mixtures. Bioresour. Technol., vol. 261, 361–369, DOI: 10.1016/j.biortech.2018.04.039.

7. A. sampepana Fauziati. (2015). Characterization of the active component of the refined palm shell liquid smoke. J. Ris. Teknol. Ind., p. 64–72

8. N. Aprianti, M. Faizal, M. Said, and S. Nasir. (2021). Catalytic gasification of oil palm empty fruit bunch by using Indonesian bentonite as the catalyst. J. Appl. Eng. Sci., 1–10, DOI: 10.5937/jaes0-28781.

9. L. Ni’Mah, M. F. Setiawan, and S. P. Prabowo. Utilization of Waste Palm Kernel Shells and Empty Palm Oil Bunches as Raw Material Production of Liquid Smoke. IOP Conf. Ser. Earth Environ. Sci., vol. 366, no. 1, DOI: 10.1088/1755-1315/366/1/012032.

10. B. Kılınç and Ş. Çaklı. (2012). Growth of Listeria monocytogenes as Affected by Thermal Treatments of Rainbow Trout Fillets Prepared with Liquid Smoke. Turkish J. Fish. Aquat. Sci., vol. 290, 285–290, DOI: 10.4194/1303-2712-v12.

11. J. E. Omoriyekomwan, A. Tahmasebi, and J. Yu. (2016). Production of phenol-rich bio-oil during catalytic fixed-bed and microwave pyrolysis of palm kernel shell. Bioresour. Technol., vol. 207, 188–196, DOI: 10.1016/j.biortech.2016.02.002.

12. M. Faisal and A. Gani. (2018). The effectiveness of liquid smoke produced from palm kernel shells pyrolysis as a natural preservative in fish balls. Int. J. GEOMATE, vol. 15, no. 47, 145–150, DOI: 10.21660/2018.47.06109.

13. Arief Rachmawan, Wijaya, and Andi. (2017). Liquid Smoke Plus As A Latex Clotter. J. agro estate, p.23-31

14. I. Kresnawaty, S. M. Putra, A. Budiani, and T. Darmono. (2018). Conversion of Oil Palm Empty Bunches (TKKS) into Biological Charcoal and Liquid Smoke. J. Postharvest Agric. Res., DOI: 10.21082/jpasca.v14n3.2017.171-179.

15. A. Asmawit, H. Hidayati, and N. Supriyatna. (2011). Utilization of Liquid Smoke from Oil Palm Empty Bunches in Raw Rubber Processing. Biopropal Ind., vol. 02, no. 01, 7–12.

16. S. J. Oh, G. G. Choi, and J. S. Kim. (2016). Characteristics of bio-oil from the pyrolysis of palm kernel shell in a newly developed two-stage pyrolyzer. Energy, vol. 113, 108–115, DOI: 10.1016/

17. A. Priatni, Y. Adiningsih, B. Riset, D. Standardisasi, and I. Samarinda. (2018). The effect of various pyrolisis temperature of liquid smoke from palm shells as latex coagulant.J. Ris. Teknol. Ind., p.139–149.

18. G. Chang et al. (2016). The lignin pyrolysis composition and pyrolysis products of palm kernel shell, wheat straw, and pine sawdust. Energy Convers. Manag., vol. 124, no.1, 587–597, DOI: 10.1016/j.enconman.2016.07.038.

19. M. Nayaggy and Z. A. Putra. (2019). Process simulation on fast pyrolysis of palm kernel shell for production of fuel. Indones. J. Sci. Technol., vol. 4, no. 1, 64–73, DOI: 10.17509/ijost.v4i1.15803.

20. Y. An, A. Tahmasebi, X. Zhao, T. Matamba, and J. Yu. (2020). Catalytic reforming of palm kernel shell microwave pyrolysis vapors over iron-loaded activated carbon: Enhanced production of phenol and hydrogen. Bioresour. Technol., vol. 306, no. 1, p. 123111, DOI: 10.1016/j.biortech.2020.123111.

21. K. Endang, G. Mukhtar, Abed Nego, and F. X. A. Sugiyana. (2016). Processing of Plastic Waste with the Pyrolysis Method into Fuel Oil. Dev. Chem. Technol. Process. Indones. Nat. Resour., vol. ISSN 1693-, p. 1–7,

22. P. N. Sheth and B. V Babu. (2006). Kinetic Modeling of the Pyrolysis of Biomass. Environ. Eng. vol. 4, no. January, pp. 453–458.

23. A. Kwiecińska, T. Iluk, and M. Kochel. (2016). Utilization of aqueous-tar condensates formed during gasification. J. Ecol. Eng., vol. 17, no. 5, 132–137, DOI: 10.12911/22998993/65462.

24. X. Li, J. Ma, and X. Ling. Design and dynamic behaviour investigation of a novel VOC recovery system based on a deep condensation process. Cryogenics (Guildf)., vol. 107, no. 30, p. 103060, DOI: 10.1016/j.cryogenics.2020.103060.

25. M. Sheikholeslami, M. Darzi, and Z. Li, . (2018). Experimental investigation for entropy generation and exergy loss of nano-refrigerant condensation process. Int. J. Heat Mass Transf., vol. 125, 1087–1095, DOI: 10.1016/j.ijheatmasstransfer.2018.04.155.

26. M. Faisal, A. Gani, F. Mulana, H. Desvita, and S. Kamaruzzaman. (2020). Effects Of Pyrolysis Temperature On The Composition Of Liquid Smoke Derivied From Oil Palm Empty Fruit Bunches. Rayasan J., p. 514–520.

27. K. Ridhuan, D. Irawan, and R. Inthifawzi. (2019). Pyrolysis Combustion Process with Biomass Types and Characteristics of the Produced Liquid Smoke. J. Progr. Stud. Tek. Mesin UM Metro, vol. 8, no. 1, p. 69–78.

28. Lisa Ginayati, M. Faisal, and Suhendrayatna. (2015). Utilization of Liquid Smoke from Oil Palm Shell Pyrolysis as Natural Preservative of Tofu. J. Chem. Eng., vol. 4, no. 3, 7–11, DOI: 10.32734/jtk.v4i3.1474.

29. A.R.Trott and T.C.Welch, Refrigeration and Air Conditioning. Butterworth-Heinemann: f Reed Educational and Professional Publishing.

30. A. Mota-Babiloni, J. Navarro-Esbrí, Á. Barragán-Cervera, F. Molés, B. Peris, and G. Verdú.(2015). Commercial refrigeration - An overview of current status. Int. J. Refrig., vol. 57, 186–196, DOI: 10.1016/j.ijrefrig.2015.04.013.

31. B. Withman and B. Johnson. (2006). Refrigeration and Air Conditioning Technology, 6 th. Delmar.

32. H. Rostamzadeh, T. Gholizadeh, S. Rostamzadeh, S. Vosoughi, and A. A. Farshad. (2021). Role of ejector expander in optimal inherently safety design of cascade NH3/Propane/CO2 vapor compression refrigeration systems. Process Saf. Environ. Prot., vol. 146, 745–762,DOI: 10.1016/j.psep.2020.12.009.

33. T. Łokietek, S. Jaszczak, and P. Nikończuk. (2019). Optimization of control system for modified configuration of a refrigeration unit. Procedia Comput. Sci., vol. 159, 2522–2532, DOI: 10.1016/j.procs.2019.09.427.

34. K. Chen, T. P. Xiao, P. Santhanam, E. Yablonovitch, and S. Fan. (2017). High-performance near-field electroluminescent refrigeration device consisting of a GaAs light emitting diode and a Si photovoltaic cell. J. Appl. Phys., vol. 122, no. 14, DOI: 10.1063/1.5007712.

35. B. Saleh and A. A. Aly. (2015). Flow Control Methods in Refrigeration Systems : A Review Flow Control Methods in Refrigeration Systems : A Review,” Int. J. Control. Autom. Syst., p. 12.