Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science


DOI: 10.5937/jaes0-31312 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 20 article 904 pages: 63-70

Nina Haryani
Universitas Sumatera Utara, Faculty of Engineering, Chemical Engineering Doctoral Program, Medan, Indonesia; Universitas Sriwijaya, Faculty of Engineering, Department of Chemical Engineering, Palembang, Indonesia

Universitas Sumatera Utara, Faculty of Engineering, Chemical Engineering Doctoral Program, Medan, Indonesia

Universitas Sumatera Utara, Faculty of Engineering, Chemical Engineering Doctoral Program, Medan, Indonesia

Renita Manurung
Universitas Sumatera Utara, Faculty of Engineering, Chemical Engineering Doctoral Program, Medan, Indonesia

Rondang Tambun
Universitas Sumatera Utara, Faculty of Engineering, Chemical Engineering Doctoral Program, Medan, Indonesia

Biofuels as environmentally friendly alternative fuels such as biogasoline, biokerosene and others are generally obtained through a cracking process and take place more effectively to attend a catalyst. In this study, the synthesis of ZnO/ZSM-5 aims to obtain a catalyst that can be used in the cracking process of Palm Methyl Esters (PME) into hydrocarbon fuels especially biogasoline. This catalyst is environmentally friendly, easy to separate, has good selectivity, and can increase the conversion of cracking products. The wet impregnation method followed by drying and calcination is the method used to synthesize the catalyst. Furthermore, several analyzes were carried out to determine the characteristics of the catalyst. The analysis is the Scanning Electron Microscopy-Energy Dispersive X-Ray (SEM-EDX), X-Ray Diffraction (XRD), N2 adsorption-desorption with BET-BJH, Temperature Programmed Desorption-NH3 (TPD-NH3) and the Temperature Programmed Reduction (TPR). Based on synthesis results obtained ZnO/ZSM-5 catalyst with ZnO content of 11.77 wt%, 13.61 wt% and 18.22 wt%. The use of this catalyst in the cracking process can result in the conversion of liquid fuel by 88.57%, heavy hydrocarbon (8.57%) and gas product (2.86%).

View article

The authors gratefully acknowledge Indonesian Research Fund Management Institutions (LPDP) for financial support through dissertation research scholarship, also acknowledge PT. Wilmar Bioenergy Indonesia for material support.

1. Budianto, A., Prajitno, H.P., Roesyidi, A and Budhikarjono, K. (2014). HZSM-5 catalyst for cracking palm oil to biodiesel : A comparative study with and without Pt and Pd impregnation. Scientific Study & Research, Chemistry & Chemical Engineering, Biotechnology, Food Industry, vol. 15, no. 1, 081-090. ISSN 1582-540X

2. Zandonai, C.H., Bravo, C. A.O, Fernandes-Machado, N. R. C. (2015). Biofuel production from thermocatalytic processing of vegetable oils: A review. Revista Fuentes: El Reventón Energético, vol. 13, no. 2, 83-101. DOI :

3. Xu, J, Jiang, J and Zhao, J. (2016). Thermochemical conversion of triglycerides for production of drop-in liquid fuels. Renewable and Sustainable Energy Reviews, vol. 58, 331–340. DOI :

4. Haryani, N. Harahap, H. Taslim and Irvan. (2020). Biogasoline production via catalytic cracking using zeolite and zeolite catalyst modified with metals : A Review. 2nd Talenta Conference Engineering, Science and Technology 17 Oktober 2019, p.012051

5. Singh, D, Prafull P, Anuradda G, and Mahajani, S.. (2013). Esterification of Oleic Acid with Glycerol in the Presence of Supported Zinc Oxide as Catalyst. Industrial and Chemistry Research. Vol.52, 14776−14786. DOI:

6. Singh, Dheerendra, Rohidas Bhoi, Anuradda Ganesh and Sanjay Mahajani. (2014). Synthesis of Biodiesel from Vegetable Oil Using Supported Metal Oxide Catalysts. Energy Fuel, vol. 28, no. 4, 2743–2753.DOI:

7. Singh, Dheerendra, Anuradda Ganesh and Sanjay Mahajani. (2014). Heterogeneous catalysis for biodiesel synthesis and valorization of glycerol. Clean Technology Environmental Policy, vol. 17, no. 4. DOI:

8. Roesyadi, A, Prajitno, D.H, Nurjannah, N, Savitri, S.D. (2013). HZSM-5 Catalyst for cracking palm oil to gasoline: A comparative study with and without Impregnation.Bulletin of Chemical Reaction Engineering & Catalysis, vol. 7, no. 3, 185 - 190. ISSN 1978-2993

9. Riazi, M.R, & Chiaramonti, D. (2018). Biofuels Production and Processing Technology. CRC Press, United States

10. Savitri, Effendi, R, Pramahan, G, Tursiloadi, S. (2015). Cracking callophylum innophylum L. oil to bio-gasoline by microporous zeolite and Al2O3 catalyst. Procedia Chemistry vol. 16, 555-562. DOI:

11. Zhao, Xianhui, Wei, L, Cheng, S, Julson, J.(2015). Optimization of catalytic cracking process for upgrading camelina oil to hydro-carbon biofuel. Industrial Crops and Products, vol. 77, 516-526.DOI:

12. Botas, J.A, Serrano, D.P, Garcí, A, De Vicente, J, Ramos, R. (2012). Catalytic conversion of rapeseed oil into raw chemicals and fuels over Ni- and Mo-modified nanocrystalline ZSM-5 zeolite. Catalysis Today, vol. 195, issue 1, 59-70. DOI:

13. Botas, J.A, Serrano, D.P, Garcíac, A, Ramos, A. (2014). Catalytic conversion of rapeseed oil for the production of raw chemicals, fuelsand carbon nanotubes over Ni-modified nano-crystalline and hierarchical ZSM-5. Applied Catalysis B: Environmental, vol. 145, 205– 215. DOI:

14. Zandonai, C. H, Cordeiro, P.H.Y, Pergher, S.B.C, Scaliante, M.H.N.O, & Machado, R.N.C.F. (2016). Production of petroleum like synthetic fuel by hydrocracking of crude soybean oil over ZSM5 zeolite – Improvement of catalyst lifetime by ion exchange. Fuel, vol. 172, 228–237. DOI:

15. Nasikin, M, Susanto, B.H, Hirsaman, M.A & Wijanarko, A . (2009). Biogasoline from Palm Oil by Simultaneous Cracking and Hydrogenation Reaction over Nimo/zeolite Catalyst. World Applied Sciences Journal 5 (Special Issue for Environment), vol. 5, 74-79. ISSN 1818-4952.

16. Tillotama A S, Nurjannah, and Danawati HP. (2012). Produksi biofuel dari minyak kelapa sawit dengan katalis Au/HZSM-5 dan kompositnya. JurnalTeknik ITS vol. 1, no. 1, 142. ISSN: 2301-9271

17. Zhao, X, Wei, L, Cheng, S, Yu, Y, Julson, J. (2015). Catalytic cracking of carinata oil for hydrocarbon biofuel over Zn/Na-ZSM-5. ASABE, no. 152182612 DOI: 10.13031/aim.20152182612

18. Savitri, Effendi, R and Tursiloadi, S. (2016). Cracking vegetable oil from callophylluminno phyllum L. seeds to biogasoline by Ni-Mo/Al2O3 and Ni-Mo/Zeolite as micro-porous catalysts. AIP Conference Proceedings, vol. 1712, issue 1, 050008. DOI:

19. Salim, I, Trisunaryanti, W,Triyono, Arryanto, Y. (2016). Hydrocracking of coconut oil into gasoline fraction using NI/modified natural zeolite catalyst. International Journal of ChemTech Research, vol.9, no.04, 492-500. ISSN: 0974-4290

20. Marlinda, L, Al-Muttaqii, M Gunardi, I, Roesyadi, A, Prajitno, D.H. (2017). Hydrocracking of cerbera manghas oil with Co-Ni/HZSM-5 as double promoted catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, vol. 2, no.2, 167-184. DOI:

21. Widayat, Saputro, S.A, Ginting, E.M, Annisa, A.N and Satriadi, H.(2017). Biofuel production by catalytic cracking method using Zn/HZSM-5 catalyst. ARPN Journal of Engineering and Applied Sciences, vol. 12, no. 22, 11. ISSN 1819-6608

22. Mahajani, S.M.. Ganesh, A. Singh, D. K. Gupta, P.D. (2010). Heterogeneous acid catalyst for producing biodiesel from vegetable oils and process for the preparation thereof. Indian Pat. Appl.2134/MUM/2010

23. Fermoso, J. Hernando, H. Jana, P. Moreno, I. Prech, J. Hernandez, C.O. Pizarro, P. Coronado, J.M . Cejka, J. Serrano, D.P. (2016). Lamellar and pillared ZSM-5 zeolites modified with MgO and ZnO for catalytic fast-pyrolysis of eucalyptus woodchips.Catalysis Today, vol. 171, part 1, 171-181. DOI:

24. Abdullah, Thamer.A and Zaidi, H.A. (2016). Effect of ZnO and NiO modified HZSM-5 catalyst for ethanol conversion to hydrocarbons. International Journal of Chemical Engineering and applications, vol.7, no.3, 151-155. DOI :

25. Yigezu, Zerihun.D. Muthukumar, Karuppan. (2014). Catalytic cracking of vegetable oil with metal oxides for biofuel production. Energy Conversion and Management, vol. 84, 326 - 333. DOI:

26. Thommes, M, Kaneko, K, Neimark, Alexander.V, Olivier, James.P, Rodrigiez-Reinoso, F, Rouquerol, J and Sing, K.S.W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry. (PAC-REP-14-11-17). DOI: . IUPAC & De Gruyter

27. Seader, J.D. Henley, Ernest J, and Keith Roper, D. (2010). Adsorption, Ion Exchange, Chromatography, and Electrophoresis. Don Fowley, Separation Process Chemical. John Wiley & Sons, Inc, New York. p.579

28. Fessenden Fessenden & Fessenden. (1982). Kimia Organik Jilid Ketiga. Erlangga, Jakarta. P.27

29. Kurniawan, T. (2016). Potensi Zeolit untuk pembuatan bahan kimia dari bahan hayati, Teknik Kimia Indonesia, December Edition.

30. Handoko, D. S. P., Triyono., Narsito., dan Tutik Dwi Wahyuningsih. 2009. Pengaruh Temperatur terhadap Kinerja Katalis Ni/Zeolit pada Reaksi Hidrogenasi Katalitik 1-Oktadekena.Reaktor Chemical engineer Journal, vol. 1, no. 4, 218-225. DOI:

31. Jiang, F, Huang, J, Niu, L, and Xiao, G. (2018). Atomic layer deposition of ZnO thin films on ZSM-5 zeolite and its catalytics performance in chichibabin reaction. Catalysis Letter, vol. 145, 947–954. DOI:

32. Xu, J, Jiang, J dan Zhao, J. (2016). Thermochemical conversion of triglycerides for production of drop-in liquid fuels. Renewable and Sustainable Energy Reviews, vol. 8, 331-340.

33. Sadrameli, S.M and seifi, H. (2016). Improvement of renewable transportation fuel properties by deoxygenation process using thermal and catalytic cracking of triglycerides and their methyl esters. Applied Thermal Engineering, vol. 100, 1102-1110. DOI: 02.022