Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science


DOI: 10.5937/jaes0-31522 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 20 article 926 pages: 246-253

Atriyon Julzarika*
Department of Geodetic Engineering, Universitas Gadjah Mada (UGM), Yogyakarta, Indonesia; National Research and Innovation Agency (BRIN), Cibinong, Indonesia

Trias Aditya
Department of Geodetic Engineering, Universitas Gadjah Mada (UGM), Yogyakarta, Indonesia

Subaryono Subaryono
Department of Geodetic Engineering, Universitas Gadjah Mada (UGM), Yogyakarta, Indonesia

Harintaka Harintaka
Department of Geodetic Engineering, Universitas Gadjah Mada (UGM), Yogyakarta, Indonesia

The Central Kalimantan province in Indonesia has one of the country's largest peatlands. The Peatland has dynamic topographic conditions that cause land subsidence or uplift in water levels. Monitoring the topographic dynamics conditions of this Peatland requires an up-to-date DTM capable of presenting the latest conditions. Monitoring with the latest DTM is needed because there is currently no method suited to large-scale, cost-effective mapping. This study aims to monitor the dynamics of topography in Peatland using the latest DTM. The latest DTM is a combination of the DTM master and the latest displacement. The novelty of this research is in monitoring the dynamics of Peatland with the latest DTM every rainy and dry season. DTM master is DTM extracted from InSAR ALOS PALSAR-2. Displacement was obtained from DInSAR extraction from Sentinel-1. The research area is located in Pulang Pisau, Indonesia. DTM master was extracted using InSAR in December 2017. Displacement was extracted every 6–7 months. The monitoring periods for dynamics topographic were January 2018, August 2018, January 2019, July 2019, January 2019, and June 2020. Each period involved extracting the latest DTM and the displacement. The dynamics topography of the study area lies at the value of 1.5 m. This latest DTM can be used for 1: 20,000 to 1: 25,000 mapping. The latest DTM has a RMSE(z) of 0.705 m on the field measurement. This vertical accuracy-test uses 15 points from GNSS-levelling. Based on the RMSE (z) obtained, the vertical accuracy is 1.3818 m at the 95% confidence level.

View article

The authors would like to thank UGM, LAPAN, Ministry for Research and Technology, Ministry of Public Works, Ministry for research, technology, and higher education, ESA, ASF, the local government of Pulang Pisau Regency, the local government of Central Kalimantan Province, and P.T. Citra Bhumi Indonesia for the research fund and their support during the field survey, data support, and data compilation. AJ contributes to writing, data processing, and analysis. TA, SS, and HH contribute to analysis and writing correction.

1. Kentucky Geological Survey (KGS), "Coal Information," Kentucky Geological Survey, University of Kentucky. (2016).

2. Houghton, R. A. et al., "Carbon emissions from land use and land-cover change," vol. 4, pp. 5125–5142, DOI: 10.5194/bg-9-5125-2012. (2012).

3. Konecny, K. et al., "Variable carbon losses from recurrent fires in drained tropical peatlands," Glob. Chang. Biol., vol. 22, no. 4, pp. 1469–1480, DOI: 10.1111/gcb.13186. (2016).

4. Reddington, C. L., Balasubramanian, R., Spracklen, D., "Contribution of vegetation and peat fires to particulate air pollution in Southeast Asia," no. February 2015, 2014, DOI: 10.1088/1748-9326/9/9/094006. (2015).

5. Cahyono, B. K., Aditya, T., Istarno, "The least square adjustment for estimating the tropical peat depth using LiDAR data," Remote Sens., vol. 12, no. 5, DOI: 10.3390/rs12050875. (2020).

6. Winantris, W., Hamdani, H., Harlia, E. "Paleoenvironment of Tanjung Formation Barito Basin- Central Kalimantan Based on palynological data," J. Geosci. Eng. Environ. Technol., vol. 2, no. 2, p. 110, 2017, DOI: 10.24273/jgeet.2017.2.2.305. (2017).

7. Asmuß, T., Bechtold, M., Tiemeyer, B. "On the Potential of Sentinel-1 for High Resolution Monitoring of Water Table Dynamics in Grasslands on Organic Soils," Remote Sens., vol. 11, no. 14, p. 1659, DOI: 10.3390/rs11141659. (2019).

8. Julzarika, A., Setiawan, K. T. "Utilization of SAR and Earth Gravity Data for Sub Bituminous Coal Detection," Int. J. Remote Sens. Earth Sci., vol. 11, no. 2, p. 143, Apr., doi: 10.30536/j.ijreses.2014.v11.a2612. (2017).

9. Badan Pusat Statistik, Statistik Daerah Kabupaten Pulang Pisau Tahun 2020. (2020).

10. Abidin, H. Z., "The tectonic history and mineral depostit of easte-west Kalimantan .pdf," University of Adelaide, (1998).

11. Purnama, A., Huda, M. "A preliminary study of Indonesian coal basins for underground coal gasification development," Indones. Min. J., vol. 22, no. 1, pp. 61–76, DOI: 10.30556/imj.vol22.no1.2019.275. (2019).

12. McPartland, M. et al., "Characterizing Boreal Peatland Plant Composition and Species Diversity with Hyperspectral Remote Sensing," Remote Sens., vol. 11, no. 14, p. 1685, DOI: 10.3390/rs11141685. (2019).

13. Trisakti, B., Julzarika, A., Nugroho, U. C., Yudhatama, D., Lasmana, D., "Can the Peat Thickness Classes be Estimated from Land Cover Approach?," Int. J. Remote Sens. Earth Sci., vol. 14, no. 2, p. 93, Jan. 2018, DOI: 10.30536/j.ijreses.2017.v14.a2677. (2018).

14. Vernimmen, R. et al., "Mapping deep peat carbon stock from a LiDAR based DTM and field measurements, with application to eastern Sumatra," Carbon Balance Manag., vol. 15, no. 1, pp. 1–18, DOI: 10.1186/s13021-020-00139-2. (2020).

15. Siegert, F. et al., "International Peat Mapping Team ( IPMT )," (2018).

16. Costantini, M., "A novel phase unwrapping method based on network programming," IEEE Trans. Geosci. Remote Sens., vol. 36, no. 3, pp. 813–821, DOI: 10.1109/36.673674. (1998).

17. Devanthéry, N., Crosetto, M., Cuevas-González, M., Monserrat, O., Barra, A., Crippa, B., “Deformation Monitoring Using Persistent Scatterer Interferometry and Sentinel-1 SAR Data,” Procedia Comput. Sci., vol. 100, pp. 1121–1126, doi: 10.1016/j.procs.2016.09.263. (2016).

18. Venera, J., Anton, F., Irina, K., Alena, Y., "SAR Interferometry Technique for Ground Deformation Assessment on Karazhanbas Oilfield," Procedia Comput. Sci., vol. 100, pp. 1163–1167, DOI: 10.1016/j.procs.2016.09.271. (2016).

19. Caló, F., "DInSAR-based detection of land subsidence and correlation with groundwater depletion in konya plain, Turkey," Remote Sens., vol. 9, no. 1, DOI: 10.3390/rs9010083. (2017).

20. Lubis, A. M., Sato, T., Tomiyama, N., Isezaki, Yamanokuchi, N., "Ground subsidence in Semarang-Indonesia investigated by ALOS-PALSAR satellite SAR interferometry," J. Asian Earth Sci., vol. 40, no. 5, pp. 1079–1088, DOI: 10.1016/j.jseaes.2010.12.001. (2011).

21. Julzarika, A., Harintaka, "Indonesian DEMNAS: DSM or DTM?," in 2019 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS), pp. 31–36, DOI: 10.1109/AGERS48446.2019.9034351. (2020).

22. Hooper, A., Bekaert, D., Spaans, Ar, M., "Tectonophysics Recent advances in SAR interferometry time series analysis for measuring crustal deformation," vol. 517, pp. 1–13, DOI: 10.1016/j.tecto.2011.10.013. (2013).

23. Castellazzi, P., Garfias, J., Martel, Brouard, C., Rivera, A., "InSAR to support sustainable urbanization over compacting aquifers: The case of Toluca Valley, Mexico," Int. J. Appl. Earth Obs. Geoinf., vol. 63, (2017}, DOI: 10.1016/j.jag.2017.06.011.

24. Lusch, D. P., "Introdcution to Microwave Remote Sensing," DOI: 10.1111/j.1477-9730.2009.00531_1.x. (1999).

25. Zuo, R., Qu, C., Shan, X., Zhang, G, X. Song., "Tectonophysics Coseismic deformation fields and a fault slip model for the Mw 7.8 mainshock and Mw 7.3 aftershock of the Gorkha-Nepal 2015 earthquake derived from Sentinel-1A SAR interferometry," Tectonophysics, vol. 686, pp. 158–169, DOI: 10.1016/j.tecto.2016.07.032. (2016).

26. Lanari, R., Mora, O., Manunta, M., Mallorquí, J. J., Berardino, P., Sansosti, E., "A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 7, pp. 1377–1386, DOI: 10.1109/TGRS.2004.828196. (2004).

27. Strozzi, T. et al., "Satellite SAR interferometry for the improved assessment of the state of activity of landslides: A case study from the Cordilleras of Peru," Remote Sens. Environ., vol. 217, no. August, pp. 111–125, DOI: 10.1016/j.rse.2018.08.014. (2018).

28. Baran, I., Stewart, M. P., Kampes, B. M., Perski, Z., Lilly, P., "A modification to the Goldstein radar interferogram filter," IEEE Trans. Geosci. Remote Sens., vol. 41, no. 9 PART II, pp. 2114–2118, doi: 10.1109/TGRS.2003.817212. (2003).

29. Sun, Q., Li, Z. W., Zhu, J. J., Ding, X. J., Hu, J., Xu B., "Improved Goldstein filter for InSAR noise reduction based on local SNR," J. Cent. South Univ., vol. 20, no. 7, pp. 1896–1903, DOI: 10.1007/s11771-013-1688-3. (2013).

30. Li, L., Kuai, X., "An efficient dichotomizing interpolation algorithm for the refinement of TIN-based terrain surface from contour maps," Comput. Geosci., vol. 72, pp. 105–121, DOI: 10.1016/j.cageo.2014.07.001. (2014).

31. Wessel, B., Huber, B., Wohlfart, C., Marschalk, U., Kosmann, D., Roth, A., "Accuracy assessment of the global TanDEM-X Digital Elevation Model with GPS data," ISPRS J. Photogramm. Remote Sens., vol. 139, DOI: 10.1016/j.isprsjprs.2018.02.017. (2018).

32. Rizzoli, P., Bräutigam, B., Kraus, T., Martone, M., Krieger, G., “Relative height error analysis of TanDEM-X elevation data,” ISPRS J. Photogramm. Remote Sens., vol. 73, no. 2012, pp. 30–38, doi: 10.1016/j.isprsjprs.2012.06.004. (2012).

33. Dias, P., Catalao, J., Marques, F. O., "Sentinel-1 InSAR data applied to surface deformation in Macaronesia (Canaries and Cape Verde)," Procedia Comput. Sci., vol. 138, pp. 382–387, DOI: 10.1016/j.procs.2018.10.054. (2018).

34. Rucci, A., Ferretti, A., Monti Guarnieri, A., Rocca, F., "Sentinel 1 SAR interferometry applications: The outlook for sub-millimeter measurements," Remote Sens. Environ., vol. 120, pp. 156–163, DOI: 10.1016/j.rse.2011.09.030. (2012).

35. Julzarika, A., Harintaka, "Utilization of Sentinel Satellite for Vertical Deformation Monitoring in Semangko Fault-Indonesia," ACRS, pp. 1–7, (2019).

36. Mullissa, A. G., Tolpekin, V., Stein, A., Perissin, D., "Polarimetric differential SAR interferometry in an arid natural environment," Int. J. Appl. Earth Obs. Geoinf., vol. 59, pp. 9–18, DOI: 10.1016/j.jag.2017.02.019. (2017).

37. An, W., Carlsson, W. E., "Speckle interferometry for measurement of continuous deformations," Opt. Lasers Eng., vol. 40, no. 5–6, pp. 529–541, DOI: 10.3390/ma6051656. (2003).

38. Malinowska, A. A., Witkowski, W. T., Guzy, A., Hejmanowski, R., "Mapping ground movements caused by mining-induced earthquakes applying satellite radar interferometry," Eng. Geol., vol. 246, no. October, pp. 402–411, doi: 10.1016/j.enggeo.2018.10.013. (2018).