Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science


DOI: 10.5937/jaes0-33043 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 20 article 933 pages: 305-314

Alica Kalašová
Department of Road and Urban Transport University of Žilina, Žilina 01026, Slovakia

Ambróz Hájnik*
Department of Road and Urban Transport University of Žilina, Žilina 01026, Slovakia

Stanislav Kubaľák
Department of Road and Urban Transport University of Žilina, Žilina 01026, Slovakia

Ján Beňuš
Department of Road and Urban Transport University of Žilina, Žilina 01026, Slovakia

Veronika Harantová
Department of Road and Urban Transport University of Žilina, Žilina 01026, Slovakia

In our paper, we have analyzed and compared fixed and actuated control at a chosen intersection, where we pointed out the importance of actuated control and its benefits. We have used traffic data from sensors in the roadway. The intersection was modelled in Aimsun, where we performed simulations. The research focused mainly on the impact of actuated control on the basic characteristics of the traffic flow, delay time and emissions. The outputs of simulations showed positive results of actuated control in all compared values. The environmental pollution topic is up-to-date and road transport has a significant impact on it. Furthermore, we want to continue with our research to investigate the impact of speed changes on emission production and the smoothness of the traffic flow under fixed and actuated control.

View article

We would like to thank Siemens Mobility for provided traffic data and signal plans of solved signal-controlled intersection

1. Albalate, D., Fageda, X. (2019). Congestion, road safety, and the effectiveness of public policies in urban areas. Sustainability, vol. 11, no. 18, DOI:

2. Li, J., Dridi, M., El-Moudni, A. (2016). A Cooperative Traffic Control of Vehicle–Intersection (CTCVI) for the Reduction of Traffic Delays and Fuel Consumption. Sensors, vol. 16, no. 12, DOI:

3. Xia, X., Ma, X., Wang, J. (2019). Control Method for Signalized Intersection with Integrated Waiting Area. Applied Sciences, vol. 9, no. 5, DOI:

4. Wu, J., Liu, P., Qin, X., Zhou, H., Yang, Z. (2019). Developing an actuated signal control strategy to improve the operations of contraflow left-turn lane design at signalized intersections. Transportation research part C: emerging technologies, vol. 104, p. 53-65. DOI:

5. Mayeres, I., Ochelen, S., Proost, S. (1996). The marginal external costs of urban transport, Transportation Research Part D: Transport and Environment, vol. 1, no. 2, p. 111-130, DOI:

6. Black, J. (2018). Urban transport planning: Theory and practice. Routledge. ISBN: 135106858X.

7. Abduljabbar, R., Dia, H., Liyanage, S., Bagloee, S.A. (2019). Applications of artificial intelligence in transport: An overview. Sustainability, vol. 11, no. 1, DOI:

8. Liyanage, S., Dia, H. (2020). An Agent-Based Simulation Approach for Evaluating the Performance of On-Demand Bus Services. Sustainability, vol. 12, no. 10, DOI:

9. Moslem, S., Duleba, S. (2019). Sustainable Urban Transport Development by Applying a Fuzzy-AHP Model: A Case Study from Mersin, Turkey. Urban Science, vol. 3, no. 2, DOI:

10. Konečný, V., Gnap, J., Settey, T., Petro, F., Skrúcaný, T., Figlus, T. (2020). Environmental Sustainability of the Vehicle Fleet Change in Public City Transport of Selected City in Central Europe. Energies, vol. 13, no. 15, DOI:

11. Glotz-Richter, M., Koch, H. (2016). Electrification of Public Transport in Cities (Horizon 2020 ELIPTIC Project). Transportation Research Procedia, vol. 14, p. 2614–2619, DOI:

12. Guno, C.S., Collera, A.A., Agaton, C.B. (2021). Barriers and Drivers of Transition to Sustainable Public Transport in the Philippines. World Electric Vehicle Journal, vol. 12, no. 1, DOI:

13. Barbarossa, L. (2020). The Post Pandemic City: Challenges and Opportunities for a Non-Motorized Urban Environment An Overview of Italian Cases. Sustainability, vol. 12, no. 17, DOI:

14. Soin, A., Chahande, M. (2017). Moving vehicle detection using deep neural network. International Conference on Emerging Trends in Computing and Communication Technologies (ICETCCT) 2017, p. 1-5. DOI: 10.1109/ICETCCT.2017.8280336.

15. Li, Y., Tian, B., Li, B., Xiong, G., Zhu, F., Wang, K. (2013). Vehicle detection with a part-based model for complex traffic conditions. International Conference on Vehicular Electronics and Safety, 2013, p. 110-113, DOI: 10.1109/ICVES.2013.6619613.

16. Poliak, M., Poliakova, A., Mrnikova, M., Šimurková, P., Jaśkiewicz, M., Jurecki, R. (2017). The competitiveness of public transport. Journal of Competitiveness, vol. 9 no. 3, p. 81-97, DOI:

17. Nie, C., Wei, H., Shi, J., Zhang, M. (2021). Optimizing actuated traffic signal control using license plate recognition data: Methods for modeling and algorithm development. Transportation Research Interdisciplinary Perspectives, vol. 9, DOI:

18. Mangiaracina, R., Perego, A., Salvadori, G., Tumino, A. (2016). A comprehensive view of intelligent transport systems for urban smart mobility. International Journal of Logistics Research and Applications, vol. 20, no. 1, p. 1-14. DOI:

19. Papageorgiou, M., Ben-Akiva, M., Bottom, J., Bovy, P.H.L., Hoogendoorn, S.P., Hounsell, N.B., McDonald, M. (2007). ITS and Traffic Management. Barnhart, C., Laporte, G., Handbooks in Operations Research and Management Science. Elsevier, vol. 14, p. 715-774. DOI:

20. Wang, X. B., Yin, K., Liu, H. (2018). Vehicle actuated signal performance under general traffic at an isolated intersection. Transportation research part C: emerging technologies, vol. 95, p. 582-598, DOI:

21. Nie, C., Wei, H., Shi, J., Zhang, M. (2021). Optimizing actuated traffic signal control using license plate recognition data: Methods for modeling and algorithm development. Transportation Research Interdisciplinary Perspectives, vol. 9, DOI:

22. Toledo, T., Balasha, T., Keblawi, M. (2020). Optimization of Actuated Traffic Signal Plans Using a Mesoscopic Traffic Simulation. Journal of Transportation Engineering, Part A: Systems, vol. 146, no. 6, DOI: 10.1061/JTEPBS.0000363.

23. Al Islam, S. B., Hajbabaie, A., Aziz, H. A. (2020). A real-time network-level traffic signal control methodology with partial connected vehicle information. Transportation Research Part C: Emerging Technologies, vol. 121, DOI:

24. Yao, Z., Jiang, Y., Zhao, B., Luo, X., Peng, B. (2020). A dynamic optimization method for adaptive signal control in a connected vehicle environment. Journal of Intelligent Transportation Systems, vol. 24, no. 2, p. 184-200, DOI:

25. Astarita, V., Giofré, V. P., Festa, D. C., Guido, G., Vitale, A. (2020). Floating car data adaptive traffic signals: A description of the first real-time experiment with “connected” vehicles. Electronics, vol. 9, no. 1, DOI:

26. Wang, Y., Yang, X., Liang, H., Liu, Y. (2018). A review of the self-adaptive traffic signal control system based on future traffic environment. Journal of Advanced Transportation, vol. 2018, DOI:

27. Zhu, L., Yu, F. R., Wang, Y., Ning, B., Tang, T. (2018). Big data analytics in intelligent transportation systems: A survey. IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 1, p. 383-398, DOI: 10.1109/TITS.2018.2815678.

28. Zeng, J., Hu, J., Zhang, Y. (2018, June). Adaptive traffic signal control with deep recurrent Q-learning. IEEE Intelligent Vehicles Symposium (IV), 2018, p. 1215-1220, DOI: 10.1109/IVS.2018.8500414.

29. Liang, X., Du, X., Wang, G., Han, Z. (2018). Deep reinforcement learning for traffic light control in vehicular networks. IEEE Transactions on Vehicular Technology, vol. 68, no. 2, p. 1243-1253, DOI: 10.1109/TVT.2018.2890726.

30. Porru, S., Misso, F. E., Pani, F. E., Repetto, C. (2020). Smart mobility and public transport: Opportunities and challenges in rural and urban areas. Journal of Traffic and Transportation Engineering (English Edition), vol. 7, no. 1, p. 88-97, DOI:

31. Anastasiadou, K., Vougias, S. (2019). “Smart” or “sustainably smart” urban road networks? The most important commercial street in Thessaloniki as a case study. Transport Policy, vol. 82, p. 18-25, DOI:

32. Islam, M. T., Hadiuzzaman, M., Fang, J., Qiu, T. Z., El-Basyouny, K. (2013). Assessing mobility and safety impacts of a variable speed limit control strategy. Transportation research record, vol. 2364, no. 1, p. 1-11, DOI:

33. Lu, X.-Y., Shladover, S. E. (2014). Review of Variable Speed Limits and Advisories: Theory, Algorithms, and Practice. Transportation Research Record, vol. 2423, no. 1, p. 15–23, DOI:

34. Harms, I. M. Brookhuis, K. A. (2016). Dynamic traffic management on a familiar road: Failing to detect changes in variable speed limits. Transportation Research Part F: Traffic Psychology and Behaviour, vol. 38, p. 37-46, DOI:

35. Nasir, M. K., Md Noor, R., Kalam, M. A., Masum, B. M. (2014). Reduction of fuel consumption and exhaust pollutant using intelligent transport systems. The Scientific World Journal, vol. 2014, DOI:

36. Faisal, A., Yigitcanlar, T., Kamruzzaman, M., Currie, G. (2019). Understanding autonomous vehicles: a systematic literature review on capability, impact, planning and policy. Journal of Transport and Land Use, vol. 12, no. 1, DOI:

37. Dimitrakopoulos, G., Uden, L., Varlamis, I. (2020). Intelligent transport systems and smart mobility. The Future of Intelligent Transport Systems, Elsevier, 2020, p. 199-205, DOI:

38. Poliak, M., Svabova, L., Konecny, V., Zhuravleva, N. A., Culik, K. (2021). New paradigms of quantification of economic efficiency in the transport sector . Oeconomia Copernicana, 12(1), 193–212.


40. Casas J., Ferrer J.L., Garcia D., Perarnau J., Torday A. (2010). Traffic Simulation with Aimsun. In: Barceló J. (eds) Fundamentals of Traffic Simulation. International Series in Operations Research & Management Science, vol 145. Springer, New York, NY.

41. TSS - TRANSPORT SIMULATION SYSTEMS. Microsimulator and Mesosimulator Aimsun 8.1 User's Manual, accessed on 2021-06-06.

42. Panis, L. I., Broekx, S., Liu, R. (2006). Modelling instantaneous traffic emission and the influence of traffic speed limits. Science of the total environment, vol. 371, no. 1-3, p. 270-285. DOI:

43. Barceló, J., Casas, J. (2005). Dynamic network simulation with AIMSUN. Simulation approaches in transportation analysis, vol. 31, p. 57-98, DOI:

44. Ifenthaler, D. (2012). Computer Simulation Model. Encyclopedia of the Sciences of Learning, DOI:

45. Cruzado, I., Donnell, E. T. (2009). Evaluating Effectiveness of Dynamic Speed Display Signs in Transition Zones of Two-Lane, Rural Highways in Pennsylvania. Transportation Research Record, vol. 2122, no. 1, p. 1-8, DOI:

46. Sinhmar, P. (2012). Intelligent traffic light and density control using IR sensors and microcontroller. International journal of advanced technology & engineering research (IJATER), vol. 2, no. 2, p. 30-35.

47. Geetha, E., Viswanadha, V., Kavitha, G. (2014). Design of intelligent auto traffic signal controller with emergency override. International journal of engineering science and innovative technology (IJESIT), vol. 3, no. 4, p. 670-675.

48. Jadhav, A., Madhuri, B., Ketan, T. (2014). Intelligent traffic light control system (ITLCS). 4th IRF international conference.

49. Stevanovic, A., Martin, P. T., Stevanovic, J. (2007). VisSim-Based Genetic Algorithm Optimization of Signal Timings. Transportation Research Record, vol. 2035, no. 1, p. 59–68. DOI:

50. Wolput, B., Christofa, E., Carbonez, A., Skabardonis, A., Tampère, C. (2015). Optimal traffic signal settings with transit signal priority. Proceedings of the 94th Annual Meeting of the Transportation Research Board, vol. 1115, p. 119.

51. Lakouari, N., Oubram, O., Bassam, A., Hernandez, S. E. P., Marzoug, R., Ez-Zahraouy, H. (2020). Modeling and simulation of CO2 emissions in roundabout intersection. Journal of Computational Science, vol. 40, DOI:

52. De Pauw, E., Daniels, S., Franckx, L., Mayeres, I. (2018). Safety effects of dynamic speed limits on motorways. Accident Analysis & Prevention, vol. 114, p. 83–89. DOI: