Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science


DOI: 10.5937/jaes0-35499 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 20 article 974 pages: 673-687

Dian M. Setiawan*
Department of Civil Engineering, Jl. Brawijaya, Bantul, Yogyakarta, Indonesia

The load characteristics in terms of the carrying capacity and the train operation speed limit Indonesia’s conventional track capability. In this study, the behaviors of Indonesia’s conventional tracks and the proposed asphaltic underlayment tracks under cyclic loading conditions of the low-speed Babaranjang (long-chain coal) freight trains have been evaluated using the finite element package Abaqus/CAE considering linear elastic behavior of materials. The numerical modeling was applied on three different layer thicknesses of sub-ballast in Indonesia’s conventional tracks and three different layer thicknesses of asphalt in asphaltic underlayment tracks to investigate the vertical compressive stress, horizontal-vertical-maximum strain, and deformation behaviors. According to the numerical simulation, the measurements indicate that the asphaltic underlayment tracks are superior to Indonesia’s conventional tracks. Furthermore, a 15 cm of asphalt layer in the asphaltic underlayment tracks demonstrates promising performance in the future of Indonesia’s railway systems. The asphaltic underlayment tracks are expected to serve the heavier and higher speed Babaranjang freight trains with longer service life and lower life cycle cost than Indonesia’s conventional tracks.

View article

1. MP3EI Masterplan. (2011). Acceleration and expansion of Indonesia economic development and national connectivity enhancement, Published by Co-ordinating Ministry of Economic Affairs, Jakarta.

2. Woroniuk, C., Aditjandra, P., Zunder, T. H. (2014). An investigation into rail freight capacity in Indonesia. Transport Research Arena, Paris.

3. Bahagia, S., Sandee, H., Meeuws, R. (2013). State of logistics Indonesia 2013, Collaboration Center of Logistics and supply chain studies, Institut Teknologi Bandung, Asosiasi Logistik Indonesia, Panteia, STC Group and World Bank.

4. Badan Pusat Statistik. Panjang jaringan jalan rel kereta api di Indonesia (km), 2015-2017 (Title in English: Length of railroad network in Indonesia (km), 2015-2017), from, accessed on 2021-12-19.

5. Sekretariat Negara. (2012). Minister of transportation regulation no. 60 of 2012 concerning railroad technical requirements (Title in English: Peraturan menteri perhubungan no. 60 tahun 2012 tentang persyaratan teknis jalur kereta api). Jakarta.

6. Dikun, S. (2010). Future Indonesian railways: An interface report towards the national railway master plan, Indonesia Infrastructure Initiative.

7. Kompas. Viral, video kereta api babaranjang alami anjlok hingga gerbong terguling (Title in English: Viral, video of the babaranjang train derailed until the carriage overthrows), from, accessed on 2021-12-19.

8. Merdeka. 6 Gerbong kereta angkut batubara anjlok di Muara Enim (Title in English: 6 Carriage of coal hauling train derails in Muara Enim), from, accessed on 2021-12-19.

9. Setiawan, D. M., Rosyidi, S. A. P. (2017). Track quality index as track quality assessment indicator. Proceeding of the 19th International Symposium of Indonesian Inter-University Transportation Studies Forum (FSTPT), Universitas Islam Indonesia, Indonesia, Ch. 2, p. 197-207.

10. Alves Costa, P., Calcada, R., Cardoso, A.S., Bodare, A. (2010). Influence of soil non-linearity on the dynamic response of high-speed railway tracks. Soil Dynamics and Earthquake Engineering, vol. 30, 221-235, DOI:

11. Sol-Sanchez, M., Pirozzolo, L., Moreno-Navarro, F., Rubio-Gamez, M. C. (2015). Advanced characterisation of bituminous sub-ballast for its application in railway tracks: The influence of temperature. Construction and Building Materials, vol. 101, 338-346, DOI:

12. Sol-Sanchez, M., Pirozzolo, L., Moreno-Navarro, F., Rubio-Gamez, M. C. (2016). A study into the mechanical performance of different configurations for the railway track section: A laboratory approach. Engineering Structures, vol. 119, 12-23, DOI:

13. Signes, C. H., Fernandez, P. M., Garzon-Roca, J., de la Torre, M. E. G., Franco, R. I. (2016). An evaluation of the resilient modulus and deformation of unbound mixtures of granular materials and rubber particles from scrap tyres to be used in subballast layers. Transportation Research Procedia, vol. 18, 384-391, DOI:

14.du Plooy, R., Grabe, H. (2017). Characterisation of rigid polyurethane foam‑reinforced ballast through cyclic loading box tests. Journal of the South African Institution of Civil Engineering, vol. 59, no. 2, 2-10, DOI:

15. Sol-Sanchez, M., D’Angelo, G. (2017). Review of the design and maintenance technologies used to decelerate the deterioration of ballasted railway tracks. Construction and Building Materials, vol. 157, 402-415, DOI:

16. Setiawan, D. M., Rosyidi, S. A. P. (2018). Vertical deformation and ballast abrasion characteristics of asphalt-scrap rubber track bed. International Journal on Advanced Science, Engineering and Information Technology, vol. 8, no. 6, 2479-2484, DOI:

17. Setiawan, D. M., Rosyidi, S. A. P., Budiyantoro, C. (2019). The role of scrap rubber, asphalt, and manual compaction against the quality of ballast layer. Jordan Journal of Civil Engineering, vol. 13, no. 4, 594-608.

18. Rosyidi, S. A. P., Setiawan, D. M., Budiyantoro, C., Bintari, L.N. (2019). The role of scrap rubber size against the characteristics of ballast layer. IOP Conf. Series: Materials Science and Engineering, 650, 1-10, DOI:

19. Setiawan, D. M. (2019). Utilization of 60/70 penetration grade asphalt on ballast structures with the variation of percentage and the number of pouring layers. Journal of the Mechanical Behavior of Materials, vol. 28, no. 1, 107-118, DOI:

20. Setiawan, D. M., Rosyidi, S. A. P. (2019). Scrap rubber and asphalt for ballast layer improvement. International Journal of Integrated Engineering, vol. 11, no. 8, 247-258, DOI:

21. Kollo, S. A., Puskas, A., Kollo, G. (2020). Rubber as a vital component of railway tracks. Procedia Manufacturing, vol. 46, 202-208, DOI:

22. Zbiciak, A., Kraśkiewicz, C., Sabouni-Zawadzka, A. A. Pełczyński J, Dudziak S. (2020). A novel approach to the analysis of under sleeper pads (usp) applied in the ballasted track structures. Materials, vol. 13, 2438, DOI:

23. Barbieri, D. M., Tangeras, M., Kassa, E., Hoff, I., Liu, Z., Wang, F. (2020). Railway ballast stabilising agents: Comparison of mechanical properties. Construction and Building Materials, vol. 252, 119041, DOI:

24. Setiawan, D. M. (2021). Application of 60/70 grade bitumen with layer variations on ballast structures. International Journal on Advanced Science, Engineering and Information Technology, vol. 11, no. 2, 698-704, DOI:

25. Wang, J., Zeng, X. (2004). Numerical simulations of vibration attenuation of high-speed train foundations with varied trackbed underlayment materials. Journal of Vibration and Control, vol. 10, 1123-1136, DOI:

26. Zeng, X. (2005). Rubber-modified asphalt concrete for high-speed railway road. Final Report for High-Speed Rail IDEA Project 40. Case Western Reserve University Cleveland, Ohio, United States.

27. Teixeira, P. F., López-Pita, A., Casas, C. (2006). Improvements in high-speed ballasted track design: benefits of bituminous sub-ballast layers. Transportation Research Record: Journal of the Transportation Research Board, 1943, 43-49.

28. Lei, X., Rose, J. G. (2008). Numerical investigation of vibration reduction of ballast track with asphalt trackbed over soft subgrade. Journal of Vibration and Control, vol. 14. no. 12, 1885-1902, DOI:

29. Liu, X., Zhao, P., Dai, F. (2011). Advances in design theories of high-speed railway ballastless tracks. Journal of Modern Transportation, vol. 19, no. 3, 154-162, DOI:

30. Fang, M., Qiu, Y., Rose, J., West. R., Ai, C. (2011). Comparative analysis on dynamic behavior of two HMA railway substructures. Journal of Modern Transportation, vol. 19, no. 1, 26-34, DOI:

31. Lei, X., Zhang, B. (2011). Analysis of dynamic behavior for slab track of high-speed railway based on vehicle and track elements. Journal of Transportation Engineering, vol. 137, no. 4, 227-240, DOI:

32. Fang, M., Cerdas, S. F., Qiu, Y. (2013). Numerical determination for optimal location of sub-track asphalt layer in high-speed rails. Journal of Modern Transportation, vol. 21, no. 2, 103-110, DOI: 33. Chen, R., Zhao, X., Wang, Z., Jiang, H., Bian, X. (2013). Experimental study on dynamic load magnification factor for ballastless track-subgrade of high-speed railway. Journal of Rock Mechanics and Geotechnical Engineering, vol. 5, 306-311, DOI:

34. Chen, R. P., Chen, J. M., Wang, H. L. (2014). Recent research on the track-subgrade of high-speed railways. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), vol. 15, no. 12, 1034-1038, DOI:

35. Wang, P., Xu, H., Chen, R. (2014). Effect of cement asphalt mortar debonding on dynamic properties of CRTS II slab ballastless track. Advances in Materials Science and Engineering, 193128, 1-8, DOI:

36. Ramirez Cardona, D., Benkahla, J., Costa, D., Calon, N., Robinet, A., Di Benedetto, H., Sauzeat, C. (2014). High-speed ballasted track behavior with sub-ballast bituminous layer. Conference: GeoRail, Marne-laVallee, France.

37. Fang, M., Cerdas, S. F. (2015). Theoretical analysis on ground vibration attenuation using sub-track asphalt layer in high-speed rails. Journal of Modern Transportation, vol. 23, no. 3, 214-219, DOI:

38. Lee, S. H., Choi, Y. T., Lee, H. M., Park, D. W. (2016). Performance evaluation of directly fastened asphalt track using a full-scale test. Construction and Building Materials, vol. 113, 404-414, DOI:

39. Bouraima, M. B., Yang, E., Qiu, Y. (2017). Mechanics calculation of asphalt concrete track-substructure layer and comparisons. American Journal of Engineering Research (AJER), vol. 6, no. 7, 280-287.

40. Liu, Y., Qian, Z. D., Zheng, D., Huang, Q. B. (2018). Evaluation of epoxy asphalt-based concrete substructure for high-speed railway ballastless track. Construction and Building Materials, vol. 162, 229-238, DOI:

41. Zhu, S., Wang, M., Zhai, W., Cai, C., Zhao, C., Zeng, D. (2018). Mechanical property and damage evolution of concrete interface of ballastless track in high-speed railway: Experiment and simulation. Construction and Building Materials, vol. 187, 460-473, DOI:

42. Setiawan, D. M., Muthohar, I., Ghataora, G. (2013). Conventional and unconventional railway for railways on soft ground in Indonesia (Case study: rantau prapat-duri railways development). Proceeding of the 16th FSTPT International Symposium, Universitas Muhammadiyah Surakarta, p. 610-620.

43. Huang, Y. H., Lin, C., Deng, X. (1984). Hot mix asphalt for railroad trackbeds – Structural analysis and design. Technical sessions, Association of asphalt paving technologists, Scottsdale, Arizona, p. 475-494.

44. Rose, J. G., Bryson, L. S. (2009). Optimally designed hot mix asphalt railway trackbeds–Test measurements, trackbed materials, performance evaluations and significant implications. The International Conference on Perpetual Pavements, Ohio Research Institute for Transportation and Environment, Columbus Ohio, United States.

45. Robinet, A., Cuccaroni, A. (2012). L’expérience grave-bitume de la LGV Est Européenne [Title in English: The bituminous mixture experience of the East European HSL], Revue générale des chemins de fer (RGCF) 220, p. 44-50.

46. Ramirez Cardona, D., Di Benedetto, H., Sauzeat, C., Calon, N., Saussine, G. (2016). Use of a bituminous mixture layer in high-speed line trackbeds. Construction and Building Materials, vol. 125, 398-407, DOI:

47. Lee, S. H., Vo, H. V., Park, D. W. (2018). Investigation of asphalt track behavior under cyclic loading: full-scale testing and numerical simulation. Journal of Testing and Evaluation, vol. 46, no. 3, 934-942, DOI:

48. Hassan, A. G., Khalil, A. A., Ramadan, I., Metwally, K. G. (2020). Investigation of using a bituminous sub-ballast layer to enhance the structural behavior of high-speed ballasted tracks. International Journal of GEOMATE, vol. 19, no. 75, 22-132, DOI:

49. Rosyidi, S. A. P. (2015). Rekayasa jalan kereta api: tinjauan struktur jalan rel. Yogyakarta: Lembaga Penelitian, Publikasi dan Pengabdian Masyarakat Universitas Muhammadiyah Yogyakarta (LP3M-UMY), Yogyakarta, Indonesia.

50. Wang, X., Pu, J., Wu, P., Chen, M. (2020). Modeling of coupling mechanism between ballast bed and track structure of high-speed railway. Mathematical Problems in Engineering, 9768904, DOI:

51. Liu, S. (2013). KENTRACK 4.0: A railway track-bed structural design program. Theses and Dissertations. Department of Civil Engineering. University of Kentucky, USA.

52. Setiawan, D. M. (2021). Structural response and sensitivity analysis of granular and asphaltic overlayment track considering linear viscoelastic behavior of asphalt. Journal of the Mechanical Behavior of Materials, vol. 30, no. 1, 66-86, DOI:

53. Setiawan, D. M. (2022). Sub-grade service life and construction cost of ballasted, asphaltic underlayment, and combination rail track design. Jordan Journal of Civil Engineering, vol. 16, no. 1, 173-192.