Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science


DOI: 10.5937/jaes0-36077 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 20 article 982 pages: 754-764

Geophysical Engineering Department, UniversitasSyiah Kuala, Banda Aceh, Indonesia

Muhammad Yanis
Geophysical Engineering Department, UniversitasSyiah Kuala, Banda Aceh, Indonesia

Geological Engineering Department, Bandung Institute of Technology, Indonesia

Rinaldi Idroes
Chemistry Department, UniversitasSyiah Kuala, Banda Aceh, Indonesia

Nugraha G S
Geological Engineering, UniversitasSyiah Kuala, Banda Aceh, Indonesia

D B Dharma
Energy and Mineral Resources Agency of Aceh Province, Banda Aceh, Indonesia

Adi Susilo
Physics Department, University of Brawijaya, Malang, Indonesia

Deni Saputra
PT. ElnusaTbk, Jakarta Selatan, Indonesia

Electrical Engineering Department, UniversitasSyiah Kuala, Banda Aceh, Indonesia

Andri Yadi Paembonan
Geophysical Engineering, Sumatera Institut of Technology, Lampung Selatan, Indonesia

SeulawahAgam has planned to construct a geothermal power plant with an estimated 275 MW by the government to replace fossil energy. This study used a magnetotelluric (MT) survey to investigate the primary geothermal system, such as heat sources, reservoirs, or faults, which are responsible for regulating the surface manifestation. The regional volcano and fault of the Seulimum segments were traversed by 26 MT stations. The 1D Inversion was conducted toward the overall MT data using the Occam inversion algorithm from IP2Win MT. This Inversion was performed to acquire characteristics of the geothermal system based on resistivity parameters against the depth. The 1D model distribution was combined and converted into pseudo 2D, which could depict the subsurface conditions. Based on the data analysis, the cross-section model revealed that the volcanic sediment layer near the surface had a resistivity of 57–98 Ωm. In the depth of 4–8 km in profile one, and 0.2–2 km, in profile 2, coverage of clay cap rocks was found with impermeable properties, where the resistivity was low (<10 Ωm). Afterward, the reservoir layer was characterized by resistivity ranging from 94 to 188 Ωm located at 1–3 km depth, where this anomaly could be seen across all measuring tracks. Meanwhile, the region beneath the reservoir was estimated to be a heat source with a depth range of 2–5 km, as evidenced by a high resistivity of more than >1000 Ωm. The pseudo-2D results could provide an initial model of SeulawahAgam’s geothermal system.

View article

We would like to thank the Energy and Mineral Resources Agency of Aceh Province andElnusaTbk. This study was partly supported by Research Grants of Terapan Unggulan Perguruan Tinggi from the Indonesian Ministry of Research and Technology, the contract number of the research is16/UN11.2.1/PT.01.03/DRPM/2022.

1. Guilling Wang., Wei, Zhang., Feng, Ma., Wen, jing, Lin., Yun Lian., and X. Zhu. (2018). Overview on hydrothermal and hot dry rock researches in China,China Geol., vol. 1, no. 2, pp. 273–285, DOI: 10.31035/cg2018021.

2. Haselwimmer, C, Prakash, A. (2013). Thermal Infrared Remote Sensing of Geothermal Systems. Remote Sensing and Digital Image Processing, Vol. 17, P 453–473.

3. Dipippo, R. (2015). Geothermal Power Plants: Principles, Applications, Case Studies and Environmental Impact: Fourth Edition. 2015.

4. Marwan., Yanis, M., Muzakir, Nugraha, G. S. (2020). Application ofQR Codes as A New Communication Technology and Interactive Tourist Guide InJaboi, Sabang. IOP Conference Series: Materials Science and Engineering, vol. 796, no. 1, DOI: 10.1088/1757-899x/796/1/012025.

5. Erfurt-Cooper, P. (2011). Geotourism In Volcanic And Geothermal Environments: Playing With Fire?.Geoheritage, DOI: 10.1007/S12371-010-0025-6.

6. Vakulchuk, R., Chan, H.Y., Kresnawan, M.R., Merdekawati, M., Overland, I., Sagbakken, H.F., Suryadi, B., Utama, N.A., Yurnaidi, Z. (2020). Indonesia: How to Boost Investment in Renewable Energy. Norwegian Institute of International Affairs (NUPI).

7. Hartono, D., Hastuti, S. H., Halimatussadiah, A., Saraswati, A., Mita, A. F, Indriani, V. (2020). Comparing The Impacts of Fossil And Renewable Energy Investments In Indonesia: A Simple General Equilibrium Analysis. Heliyon, Vol. 6, No. 6, DOI: 10.1016/J.Heliyon.2020.E04120.

8. Suryadarma, Dwikorianto, T., Zuhro, A. A., andYani, A. (2010). Sustainable Development of The Kamojang Geothermal Field. Geothermics, Vol. 39, No. 4, 391–399, DOI: 10.1016/J.Geothermics.2010.09.006.

9. Bogie, I., Kusumah, Y. I., Wisnandary, M. C. (2008). Overview of The WayangWindu Geothermal Field, West Java, Indonesia. Geothermics, Vol. 37, No. 3, 347–365, DOI: 10.1016/J.Geothermics.2008.03.004.

10. Hochstein M. P., Sudarman, S. (1993). Geothermal Resources of Sumatra. Geothermics, Vol. 22, No. 3, 181–200, DOI: 10.1016/0375-6505(93)90042-L.

11. Yanis, M., Ismail, N., Abdullah, F. (2022). Shallow Structure Fault and Fracture Mapping InJaboi Volcano, Indonesia, Using Vlf–EmAnd Electrical Resistivity Methods. Nat. Resour. Res., Vol. 31, No. 1, 335–352, DOI: 10.1007/S11053-021-09966-7.

12. Yanis, M., Novari, I., Zaini, N., Marwan, Pembonan, A. Y., Nizamuddin. (2020). OliandTirs Sensor Platforms For Detection The Geothermal Prospecting In PeutSagoe Volcano, Aceh Province, Indonesia. Proceedings of The International Conference on Electrical Engineering and Informatics. DOI: 10.1109/Iceltics50595.2020.9315378.

13. Zaini, M., Yanis, N., F. Abdullah, F. Van Der Meer, and M. Aufaristama, Exploring the geothermal potential of Peut Sagoe volcano using Landsat 8 OLI/TIRS images, Geothermics, vol. 105, p. 102499, Nov. 2022, doi: 10.1016/j.geothermics.2022.102499.

14. Yanis, M., Marwan, Idroes, R., Zaini, N., Paembonan, A.Y., Ananda, R., Ghani, A.A., (2022). A pilot survey for mapping the fault structure around the Geuredong volcano by using high-resolution global gravity. Acta Geophys. 1–19.

15. Marwan, Yanis, M., Idroes, R., Ismail, N. (2019). 2D Inversion and Static Shift of MTand TEM Data for Imaging The Geothermal Resources OfSeulawahAgam Volcano, Indonesia. International Journal of Geomate, vol. 17, no. 62, DOI: 10.21660/2019.62.11724.

16. Idroes, R., Yusuf, M., Saiful., Alatas, M., Subhan., Lala, A., Muslem., Suhendra, R., Idroes, G.M., Marwan., Mahlia, T.M.I. (2019). Geochemistry Exploration andGeothermometry Application in The North Zone ofSeulawahAgam, Aceh Besar District, Indonesia. Energies, vol. 12, no. 23, 4442, DOI: 10.3390/En12234442.

17. Yanis, M., Anggini, A.H., Abdullah, F., Zainal, M., Abubakar, M., (2021). Application of Unmanned Aerial Vehicle as a Base Map Layer In Near-Surface Geophysics. J. Geogr. 13, 26–36.

18. Zaini, N., Yanis, M., Marwan., Isa, M., Van Der Meer, F.(2021). Assessing Of Land Surface Temperature at The SeulawahAgam Volcano Area Using The Landsat Series Imagery. Journal of Physics: Conference Series, vol. 1825, no. 1, DOI: 10.1088/1742-6596/1825/1/012021.

19. Marwan., Idroes, R., Yanis, M., Idroes, G. M., Syahriza. (2021). A Low-Cost UAV Based Application for Identify And Mapping A Geothermal Feature In IeJue Manifestation, Seulawah Volcano, Indonesia. International Journal of Geomate, vol. 20, no. 80,135–142, DOI: 10.21660/2021.80.J2044.

20. Idroes, R., Yusuf, M., Alatas, M., Lala, A., Suhendra, R., &Idroes, G. M. (2019). Geochemistry of Sulphate Spring In The IeJue Geothermal Areas At Aceh Besar District, Indonesia. OP Conference Series: Materials Science and Engineering, vol. 523, no. 1, p. 012012

21. Marwan. (2019). Deep And Shallow Structures of Geothermal SeulawahAgam Based on Electromagnetic and Magnetic Data. International Journal ofGeomate, vol. 16, no. 53, DOI: 10.21660/2019.53.17214.

22. Ismail, N., U. Nadra, and Yanis, M,.(2021). Understanding Volcano Activity Using 2D Simulation Models of MT Data,” Proc. - 2nd SEA-STEM Int. Conf. SEA-STEM 2021, pp. 129–132, DOI: 10.1109/SEA-STEM53614.2021.9668175.

23. Drahor, M. G., Berge, M. A. (2006). Geophysical Investigations of The Seferihisar Geothermal Area, Western Anatolia, Turkey. Geothermics, vol. 35, no. 3, 302–320, DOI: 10.1016/J.Geothermics.2006.04.001.

24. Mohan K., Chaudahary,P., Kumar, G.P., Kothyari, G.C., Choudhary, V., Nagar, M., Patel, P., Gandhi, D., Kushwaha, D., Rastogi, B.K. (2018). Magnetotelluric Investigations in Tuwa-Godhra Region, Gujarat (India). Pure Applied Geophysics, vol. 175, no.10, 3569–3589, DOI: 10.1007/S00024-018-1883-0.

25. Kariya K. A., Shankland, T. J. (1983). Electrical Conductivity of Dry Lower Crustal Rocks. Geophysics, vol. 48, no. 1, 52–61, DOI: 10.1190/1.1441407.

26. Yadav, K., Shah, M., Sircar, A. (2020). Application ofMagnetotelluric (MT) Study for The Identification of Shallow And Deep Aquifers In Dholera Geothermal Region. Groundwater Sustainable Development, vol. 11, DOI: 10.1016/J.Gsd.2020.100472.

27. Arzate, J., Corbo-Camargo, F., Carrasco-Núñez, G., Hernández, J., Yutsis, V. (2018). The Los Humeros (Mexico) Geothermal Field Model Deduced from New Geophysical and Geological Data. Geothermics, vol. 71, 200–211, DOI: 10.1016/J.Geothermics.2017.09.009.

28. Spichak, V., Manzella, A. (2009). Electromagnetic Sounding of Geothermal Zones. Journal Applied Geophysics, vol. 68, no. 4, 459–478, DOI: 10.1016/J.Jappgeo.2008.05.007.

29. Marwan., et al. (2021). Mapping Of Fault and Hydrothermal System Beneath the Seulawah Volcano Inferred From A Magnetotellurics Structure. Energies, vol. 14, no. 19, 6091, DOI: 10.3390/En14196091.

30. Sieh, K., Natawidjaja, D. (2000). Neotectonics of The Sumatran Fault, Indonesia, Journal Geophyics Research: Solid Earth, vol. 105, No. B12, 28295–28326, DOI: 10.1029/2000jb900120.

31. Yanis, M., Abdullah, F., Zaini, N., Ismail, N. (2021). The Northernmost Part ofThe Great Sumatran Fault Map And Images Derived From Gravity Anomaly. Acta Geophysics, vol. 69, no. 3, 795–807, DOI: 10.1007/S11600-021-00567-9.

32. Weller, O., Lange, D., Tilmann, F., Natawidjaja, D., Rietbrock, A., Collings, R., Gregory. (2012). The Structure of The Sumatran Fault Revealed by Local Seismicity. Geophysics Research Letter, DOI: 10.1029/2011gl050440.

33. Rizal, M., Ismail, N., Yanis, M., Muzakir, Surbakti, M. S. (2019). “The 2d Resistivity Modelling on North Sumatran Fault Structure by Using Magnetotelluric Data. IOP Conference Series: Earth Environmental Science, vol. 364, no. 1, 012036, DOI: 10.1088/1755-1315/364/1/012036.

34. Yanis, M., Marwan., and N. Ismail. (2019). Efficient Use of Satellite Gravity Anomalies for mapping the Great Sumatran Fault in Aceh Province,” Indonesian J. Appl. Phys., vol. 9, no. 02, p. 61, Dec. 2019, DOI: 10.13057/ijap.v9i2.34479.

35. Ghosal, D., Singh, S. C., Chauhan, A. P. S., Hananto, N. D. (2012). New Insights on The Offshore Extension of The Great Sumatran Fault, Nw Sumatra, From Marine Geophysical Studies. Geochemistry, Geophysics Geosystems, DOI: 10.1029/2012gc004122.

36. Yanis, M., Faisal, A., Yenny, A., Muzakir, Z., Abubakar, M., And Ismail, N. (2020). Continuity of Great Sumatran Fault in The Marine Area Revealed by 3D Inversion of Gravity Data. JurnalTeknologi, Vol. 83, No. 1, 145–155, DOI: 10.11113/Jurnalteknologi.V83.14824.

37. Yanis, M., Islami, G., and Ismail, N. (2020). Geophysics and Geomorphic Observation For Near-Surface Structures Mapping of Seulimeum Fault on Lamtamot Area, Northern Sumatra,” Bull. Geol. Soc. Malaysia, vol. 73, no. 1, pp. 139–149, May 2022, DOI: 10.7186/bgsm73202211.

38. Marwan., Asrillah., Yanis, M,. and Y. Furumoto. (2019). Lithological identification of devastated area by Pidie Jaya earthquake through poisson’s ratio analysis, Int. J. GEOMATE, vol. 17, no. 63, pp. 210–216, DOI: 10.21660/2019.63.77489.

39. Hochstein M. P., Sudarman, S. (2008). History of Geothermal Exploration In Indonesia From 1970 To 2000. Geothermics, Vol. 37, No. 3, 220–266, DOI: 10.1016/J.Geothermics.2008.01.001.

40. Ismail, N., Yanis,M., Idris, S., Abdullah, F., Hanafiah, B. (2017). Near-Surface Fault Structures of The Seulimuem Segment Based on Electrical Resistivity Model. Journal Physics Conference Series, vol. 846, 012016, DOI: 10.1088/1742-6596/846/1/012016.

41. Bennett, J. D., Et Al. (1981). The Geology of The Aceh Quadrangle. Sumatra-Geological Research and Development Centre, Bandung. Explan. Note, P. 19.

42. Yanis M., et al. (2021). Geophysical And Geotechnical Approaches in Developing Subsurface Model for Gas Power Plant Foundation. Indian Geotechnical Journal, DOI: 10.1007/S40098-021-00559-Y.

43. Cumming, W. (2009). Geothermal Resource Conceptual Models Using Surface Exploration Data, Thirty-Fourth Work. Geothermal Reservoir Enginnering, P. Sgp-Tr-187.

44. Muñoz, G. (2014). Exploring For Geothermal Resources with Electromagnetic Methods. Surveys In Geophysics, vol. 35, no. 1. 101–122, DOI: 10.1007/S10712-013-9236-0.

45. Vozoff, K. (1990). Mt Principle and Practice. vol. 99, no. 4, P.441–471.

46. Singarimbun, A., Gaffar, E. Z., Tofani, P. (2017). Modeling Of Reservoir Structure by Using Magnetotelluric Method In The Area Of Mt. Argopuro, East Java, Indonesia. Journal Engineering and Technological Science, vol. 49, no. 6, 833–847, DOI: 10.5614/J.Eng.Technol.Sci.2017.49.6.9.

47. Berdichevsky, M. N., Dmitriev, V. I. (2008). Models And Methods ofMagnetotellurics. Model. Methods Magnetotellurics, 1–563, DOI: 10.1007/978-3-540-77814-1.

48. Slezak, K., Jozwiak, W., Nowozynski, K., Orynski, S., Brasse, H. (2019). 3-D Studies of MT Data In The Central Polish Basin: Influence Of Inversion Parameters, Model Space And Transfer Function Selection. Journal Applied Geophysics, vol. 161, 26–36, DOI: 10.1016/J.Jappgeo.2018.11.008.

49. Caldwell, T. G. Bibby, H. M., Brown, C. (2004). The Magnetotelluric Phase Tensor. Geophysics Journal International, vol.158, no.2, 457–469, DOI: 10.1111/J.1365-246x.2004.02281.X.

50. Yanis, M. Bakar, M. A., Ismail, N. (2017). The Use of VLF-EMand Electromagnetic Induction Methods for Mapping The Ancient Fort Of Kuta Lubok As Tsunami Heritage I. 23rd European Meeting of Environmental and Engineering Geophysics, vol.2017, no.1. 1-5, DOI: 10.3997/2214-4609.201701996.

51. Yanis, M., Zainal, M., Marwan., Ismail, N. (2019). Delineation of Buried Paleochannel Using EM Induction in Eastern Banda Aceh, Indonesia. 81st EAGE Conference and Exhibition, vol.2019, no.1. 1-5, DOI: 10.3997/2214-4609.201900705.

52. Miensopust, M. P. (2010). Multidimensional Magnetotellurics: A 2D Case Study anda 3D Approach to Simultaneously Invert for Resistivity Structure and Distortion Parameters. Phd Thesis, P. 353.

53. Kelbert, A., Meqbel, N., Egbert, G. D. Tandon, K. (2014). Modem: A Modular System for Inversion of Electromagnetic Geophysical Data. Computer Geoscience, vol. 66, 40–53,

54. Löwer, A., Junge, A. (2017). Magnetotelluric Transfer Functions: Phase Tensor and Tipper Vector Above a Simple Anisotropic Three-Dimensional Conductivity Anomaly and Implications For 3d Isotropic Inversion. Pure Applied Geophysics, vol. 174, no. 5, 2089–2101, DOI: 10.1007/S00024-016-1444-3.

55. Chave, A. D., Jones, A. G. (2012). The Magnetotelluric Method: Theory and Practice.

56. Gao, J., Et Al. (2018). Three-Dimensional Magnetotelluric Imaging of The Geothermal System Beneath the Gonghe Basin, Northeast Tibetan Plateau. Geothermics, vol. 76, 15–25.

57. Wu, C.,.(2018). Magnetotelluric Imaging of The Zhangzhou Basin Geothermal Zone, Southeastern China. Energies, vol. 11, no. 8, DOI: 10.3390/En11082170.