Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science


DOI: 10.5937/jaes0-37918 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 20 article 1033 pages: 1282-1292

Pedro R. Martínez-Manuel
Posgrado Interinstitucional de Ciencia y Tecnología – Centro de Investigaciones en Óptica, A.C. Unidad Aguascalientes, Prol. Constitución 607 Fracc. Reserva Loma Bonita, CP 20200 Aguascalientes, Aguascalientes, México

Luis M. Valentín-Coronado
CONACYT – Centro de Investigaciones en Óptica, A.C. Unidad Aguascalientes, Prol. Constitución 607, Fracc. Reserva Loma Bonita, CP 20200 Aguascalientes, Aguascalientes, México

Iván Salgado-Transito
CONACYT – Centro de Investigaciones en Óptica, A.C. Unidad Aguascalientes, Prol. Constitución 607, Fracc. Reserva Loma Bonita, CP 20200 Aguascalientes, Aguascalientes, México

Manuel I. Peña-Cruz
CONACYT – Centro de Investigaciones en Óptica, A.C. Unidad Aguascalientes, Prol. Constitución 607, Fracc. Reserva Loma Bonita, CP 20200 Aguascalientes, Aguascalientes, México

Fernando Martell-Chávez
Centro de Investigaciones en Óptica, A.C. Unidad Aguascalientes, Prol. Constitución 607, Fracc. Reserva Loma Bonita, CP 20200 Aguascalientes, Aguascalientes, México

J. Gonzalo Carrillo-Baeza
Centro de Investigación Científica de Yucatán, Unidad de Materiales, Calle 43 No. 130 x 32 y 34, Chuburná de Hidalgo, CP 97205 Mérida, Yucatán, México

Carlos A. Pineda-Arellano*
CONACYT – Centro de Investigaciones en Óptica, A.C. Unidad Aguascalientes, Prol. Constitución 607, Fracc. Reserva Loma Bonita, CP 20200 Aguascalientes, Aguascalientes, México

Manufacturing methods of CPC collectors, regardless the application, have not undergone significant modifications in recent years; the main manufacturing methods are hydraulic press stamping and some other machining methods, which generate errors in geometric curvature and damage to the high-reflectivity film coating, reducing the overall optical efficiency of the CPC. In this work, we propose a method for the fabrication of cylindrical CPCs (widely used in water-heating, disinfection, and wastewater treatment applications), which comprises the use of a 3D printed mold complemented with a structural styrofoam molding. The proposed method presents the advantage of improving the quality of the CPC profile with less damage on the surface of the high reflectivity coating and with a reduction in the quantity of deformations because of its machining processes. To evaluate the effectiveness of the presented method, an experimental-simulation test was carried out based on a photogrammetric technique combined with a Ray tracing Monte Carlo method. The test procedure compared the CPC manufactured with the proposed method (called 3DM-CPC) versus one manufactured by a conventional machining technique (referred as CM-CPC). The results obtained show a geometrical mean error value of 1.2 mm for the 3DM-CPC compared to 3.19 mm for the CM-CPC. Optical assessment by ray tracing showed a relative efficiency of 95% for the 3DM-CPC versus 82% of the CM-CPC, both of them compared to the theoretical ideal geometry of a 2D-1 Sun CPC. The benefit could be estimated in a simulation to be 9.4% in the annual performance of a 1000 L CPC thermal energy solar plant.

View article

The authors would like to acknowledge the Consejo Nacional de Ciencia y Tecnologia (CONACYT): for the financial support to the project APN 2015-01-1651 and to project 317264. Also, for providing the postgraduate scholarship to Pedro R. Martínez-Manuel. And also thanks to the Instituto para el Desarrollo de la Sociedad del Conocimiento para el Estado de Aguascalientes for the financing received through Fondo de Innovacion Tecnológica 2022 project 012-FEIT-2022. Thanks to M.C. Albor Cortés for technical assistance.

1.      Tian, M., Su, Y., Zheng, H., Pei, G., Li, G., Riffat, S. (2018). A review on the recent research progress in the compound parabolic concentrator (CPC) for solar energy applications. Renewable and Sustainable Energy Reviews, vol. 82, no. October 2017, 1272–1296. DOI:10.1016/j.rser.2017.09.050

2.      Jaaz, A. H., Hasan, H. A., Sopian, K., Haji Ruslan, M. H. Bin, Zaidi, S. H. (2017). Design and development of compound parabolic concentrating for photovoltaic solar collector: Review. Renewable and Sustainable Energy Reviews, vol. 76, 1108–1121. DOI:10.1016/J.RSER.2017.03.127

3.      Santos-González, I., García-Valladares, O., Ortega, N., Gómez, V. H. (2017). Numerical Modeling and Experimental Analysis of the Thermal Performance of a Compound Parabolic Concentrator, Applied Thermal Engineering, vol. 114. DOI:10.1016/j.applthermaleng.2016.10.100

4.      Mishra, R. K., Garg, V., Tiwari, G. N. (2017). Energy matrices of U-shaped evacuated tubular collector (ETC) integrated with compound parabolic concentrator (CPC). Solar Energy, vol. 153, 531–539. DOI:10.1016/J.SOLENER.2017.06.004

5.      Yin, P., Lv, J., Wang, X., Huang, R. (2021). A spectral splitting planar solar concentrator with a linear compound parabolic lightguide for optical fiber daylighting. Renewable Energy, vol. 179, 778–787. DOI:10.1016/j.renene.2021.07.100

6.      McMichael, S., Waso, M., Reyneke, B., Khan, W., Byrne, J. A., Fernandez-Ibanez, P. (2021). Electrochemically assisted photocatalysis for the disinfection of rainwater under solar irradiation. Applied Catalysis B: Environmental, vol. 281, no. August 2020, 119485. DOI:10.1016/j.apcatb.2020.119485

7.      Cabrera-Reina, A., Miralles-Cuevas, S., Rivas, G., Sánchez Pérez, J. A. (2019). Comparison of different detoxification pilot plants for the treatment of industrial wastewater by solar photo-Fenton: Are raceway pond reactors a feasible option?. Science of the Total Environment, vol. 648, 601–608. DOI:10.1016/j.scitotenv.2018.08.143

8.      Tiwari, D., Sherwani, A. F., Atheaya, D., Arora, A. (2017). Energy and exergy analysis of solar driven recuperated organic Rankine cycle using glazed reverse absorber conventional compound parabolic concentrator (GRACCPC) system. Solar Energy, vol. 155, 1431–1442. DOI:10.1016/J.SOLENER.2017.08.001

9.      Elashmawy, M. (2017). An experimental investigation of a parabolic concentrator solar tracking system integrated with a tubular solar still. Desalination, vol. 411, 1–8. DOI:10.1016/J.DESAL.2017.02.003

10.   Moreno-SanSegundo, J., Martín-Sómer, M., Marugán, J. (2022). Dynamic concentration factor: A novel parameter for the rigorous evaluation of solar compound parabolic collectors. Chemical Engineering Journal, vol. 437, no. December 2021. DOI:10.1016/j.cej.2022.135360

11.   Fendrich, M. A., Quaranta, A., Orlandi, M., Bettonte, M., Miotello, A. (2018). Solar concentration for wastewaters remediation: A review of materials and technologies. Applied Sciences, vol. 9, no. 1. DOI:10.3390/app9010118

12.   Carrillo, J. G., Peña-Cruz, M., Terrón-Hernández, M., Valentin, L. (2020). Low Cost High-Accuracy CPC System - A Manufacturing Methodology. Journal of Solar Energy Engineering, 1–13. DOI:10.1115/1.4048015

13.   Chafie, M., Ben Aissa, M. F., Bouadila, S., Balghouthi, M., Farhat, A., Guizani, A. (2016). Experimental investigation of parabolic trough collector system under Tunisian climate: Design, manufacturing and performance assessment. Applied Thermal Engineering. DOI:10.1016/j.applthermaleng.2016.02.073

14.   Forman, P., Müller, S., Ahrens, M. A., Schnell, J., Mark, P., Höffer, R., Hennecke, K., Krüger, J. (2015). Light concrete shells for parabolic trough collectors - Conceptual design, prototype and proof of accuracy. Solar Energy, vol. 111, 364–377. DOI:10.1016/j.solener.2014.11.002

15.   Meiser, S., Schneider, S., Lüpfert, E., Schiricke, B., Pitz-Paal, R. (2017). Evaluation and assessment of gravity load on mirror shape and focusing quality of parabolic trough solar mirrors using finite-element analysis. Applied Energy. DOI:10.1016/j.apenergy.2016.04.045

16.   Balghouthi, M., Ali, A. B. H., Trabelsi, S. E., Guizani, A. (2014). Optical and thermal evaluations of a medium temperature parabolic trough solar collector used in a cooling installation. Energy Conversion and Management. DOI:10.1016/j.enconman.2014.06.095

17.   Osório, T., Horta, P., Collares-Pereira, M. (2019). Method for customized design of a quasi-stationary CPC-type solar collector to minimize the energy cost. Renewable Energy, vol. 133, 1086–1098. DOI:10.1016/J.RENENE.2018.10.110

18.   Jadhav, A. S., Gudekar, A. S., Patil, R. G., Kale, D. M., Panse, S. V., Joshi, J. B. (2013). Performance analysis of a novel and cost effective CPC system. Energy Conversion and Management, vol. 66, 56–65. DOI:10.1016/J.ENCONMAN.2012.09.030

19.   El Ydrissi, M., Ghennioui, H., Bennouna, E. G., Farid, A. (2019). A review of optical errors and available applications of deflectometry technique in solar thermal power applications. Renewable and Sustainable Energy Reviews, vol. 116, no. October, 109438. DOI:10.1016/j.rser.2019.109438

20.   El Ydrissi, M., Ghennioui, H., Bennouna, E. G., Farid, A. (2019). Geometric, optical and thermal analysis for solar parabolic trough concentrator efficiency improvement using the photogrammetry technique under semi-arid climate. Energy Procedia, vol. 157, no. 2018, 1050–1060. DOI:10.1016/j.egypro.2018.11.272

21.   Waghmare, S. A., Gulhane, N. P. (2017). Optical evaluation of compound parabolic collector with low acceptance angle. Optik, vol. 149, 359–371. DOI:10.1016/J.IJLEO.2017.09.039

22.   Lara, F., Cerezo, J., Acuña, A., González-Ángeles, A., Velázquez, N., Ruelas, A., López-Zavala, R. (2021). Design, optimization and comparative study of a solar CPC with a fully illuminated tubular receiver and a fin inverted V-shaped receiver. Applied Thermal Engineering, vol. 184, 116141. DOI:10.1016/J.APPLTHERMALENG.2020.116141

23.   Salgado-Tránsito, I., Jiménez-González, A. E., Ramón-García, M. L., Pineda-Arellano, C. A., Estrada-Gasca, C. A. (2015). Design of a novel CPC collector for the photodegradation of carbaryl pesticides as a function of the solar concentration ratio. Solar Energy, vol. 115, 537–551. DOI:10.1016/j.solener.2015.02.034

24.   King, P., Sansom, C., Comley, P. (2020). Photogrammetry for concentrating solar collector form measurement, validated using a coordinate measuring machine. Sustainability, vol. 12, no. 1, 1–20. DOI:10.3390/su12010196

25.   Li, X., Jin, J., Yang, D., Xu, N., Wang, Y., Mi, X. (2019). Comparison of tower and trough solar thermal power plant efficiencies in different regions of China based on SAM simulation. AIP Conference Proceedings, vol. 2126, no. July. DOI:10.1063/1.5117545