Seulawah Agam is one of the volcanic areas in Aceh province, Indonesia, which planned for a powerplant constriction with an energy capacity expected to be approximately 230 MWe. This volcano has seven manifestations in the form of craters, hot water, and heated soil. The hydrothermal system in this volcano is controlled by a fault system which acts as a medium for the entry and exit of fluids. Therefore, understanding the local geology is required for geothermal power plant development, especially for the determination area for injection and production wells. In this research, we use the Very Low-Frequency Electromagnetic (VLF-EM) methods combined with electrical resistivity tomography data on the Ie Jue manifestation area to determine the shallow structure related to the manifestation. The VLF was made for 4 profiles with 700 m length for each VLF-EM profile and 300 m for electrical resistivity lines. We utilized the Karous Hjelt filter for qualitative interpretation, while Occam's algorithm was applied for 2D inversion of data for quantitative analysis of VLF-EM data. Based on the current density model, several vertical conductive anomalies can be well demonstrated at a distance of 300-400 m from the four VLF profiles. The conductive anomaly can also be seen in the resistivity data from the electrical resistivity. The results of the Occam model show that the depth of faults and fractures is seen at 30 m depth with low resistivity (below 100 Ωm). This anomaly is generally associated with outcrops in the field, such as fumarole and warm ground on the east side of the manifestation area. In addition, the 2D inversion model of VLF also shows the contrast of several fracture zones as a place for fluid to enter and exit the Seulawah volcano. Therefore, based on our result, it can be summed up that this method is effectively applied to geothermal in high terrain areas such as in Indonesia and can be used to suggest safe locations for injection wells and production of geothermal drilling.
The authors acknowledge and appreciate the contributions of the Geophysical Engineering students for assisting the acquisition of VLF-EM and electrical resistivity data in Ie Jue. The research is fully funded by Calon Professor 2022 research grant from Universitas Syiah Kuala with a No: 068/UN l1.2.1/PT.0l.03/PNBP/2022. The authors also thanks to Fernando A Monteiro Santos for providing the codes of PrepVLF and Inv2DVLF.
1.
Hochstein,
M. P., Sudarman, S. (2008). History of geothermal
exploration in Indonesia from 1970 to 2000. Geothermics, vol. 37, no. 3,
220–266, DOI: 10.1016/j.geothermics.2008.01.001
2.
Yanis, M., Ismail, N.,
Abdullah, F.(2022). Shallow Structure Fault and Fracture Mapping in Jaboi Volcano,
Indonesia, Using VLF–EM and Electrical Resistivity Methods. Natural Resources
Research, vol. 31, no. 1, 335– 352, DOI: 10.1007/s11053-021-09966-7.
3.
Yanis, M., Novari, I., Zaini,
N., Marwan., Pembonan, A.Y., Nizamuddin. (2020). OLI and TIRS Sensor Platforms
for Detection the Geothermal Prospecting in Peut Sagoe Volcano, Aceh Province,
Indonesia. International Conference on Electrical Engineering and Informatics
(ICELTICs), p. 1-6.
4.
Marwan., Yanis, M., Idroes, R.,
Ismail. (2019). 2D inversion and static shift of MT and TEM data for imaging
the geothermal resources of Seulawah Agam Volcano, Indonesia. International
Journal of GEOMATE, vol. 17, no. 62, 173-180, DOI: 1021660/2019.62.11724.
5.
Zaini,
N., Yanis, m., Marwan., Isa, M., Van Der Meer, F. (2021). Assessing Of Land Surface Temperature At The Seulawah Agam Volcano
Area Using The Landsat Series Imagery. Journal of Physics: Conference Series,
P.0122021.
6.
Marwan., Yanis, M., Nugraha,
G.S., Zainal, M., Arahman, N., Idroes, R., Dharma, D.B., Saputra, D., Gunawan,
P. (2021). Mapping of Fault and Hydrothermal System beneath the Seulawah
Volcano Inferred from a Magnetotellurics Structure. Energies, vol. 14, no. 19,
6091, DOI: 10.3390/en14196091.
7.
Marwan.,
Yanis, M., Zainal, M., Nugraha, G.S. (2020). Application
Of QR Codes As A New Communication Technology And Interactive Tourist Guide In
Jaboi, Sabang. IOP Conference Series: Materials Science and Engineering, p.
012025.
8.
Idroes, R., Yusuf, M., Saiful.,
Alatas, M., Subhan., Lala, A., Muslem., Suhendra, R., Idroes, G.M., Marwan.,
Mahlia, T.M.I. (2019). Geochemistry Exploration and Geothermometry Application
in the North Zone of Seulawah Agam, Aceh Besar District, Indonesia. Energies,
vol. 12, no. 23, 4442, DOI: 10.3390/en12234442.
9.
Zhang,
L., Jiang, P., Wang, Z., Xu, R. (2017). Convective heat
transfer of supercritical CO2 in a rock fracture for enhanced geothermal
systems. Applied Thermal Engineering, vol. 115, 923–936, DOI:
10.1016/j.applthermaleng.2017.01.013.
10.
Ebrahimi, A., Sundararajan, N.,
Babu, V.R. (2019). A Comparative Study For The Source Depth Estimation Of Very
Low Frequency Electromagnetic (VLF-EM) Signals. Journal of Applied Geophysics,
vol.162, 174-183, DOI: 10.1016/j.jappgeo.2019.01.007.
11.
Drahor,
M. G., Berge, M. A. (2006). Geophysical investigations
of the Seferihisar geothermal area, Western Anatolia, Turkey. Geothermics, vol.
35, no. 3,302–320, DOI: 10.1016/j.geothermics.2006.04.001.
12.
Özürlan,
G., Sahin, M.H. (2006). Integrated Geophysical
Investigations In The Hisar Geothermal Field, Demirci, Western Turkey.
Geothermics, vol. 35, no. 2, 110–122, DOI:
10.1016/J.GEOTHERMICS.2005.11.004.
13.
Lin,
M.J., Jeng, Y. (2010). Application Of The VLF-EM Method
With EEMD To The Study Of A Mud Volcano In Southern Taiwan. Geomorphology, vol.
119, no. 1–2, 97–110, DOI : 10.1016/J.GEOMORPH.2010.02.021.
14.
Niculescu,
B.M., Andrei, G. (2019). Using Vertical Electrical
Soundings To Characterize Seawater Intrusions In The Southern Area Of Romanian
Black Sea Coastline. Acta Geophysica, vol. 67, no. 6, 1845–1863, DOI:
10.1007/s11600-019-00341-y.
15.
Chabaane,
A., Redhaounia, B., Gabtni, H. (2017). Combined
Application of Vertical Electrical Sounding And 2D Electrical Resistivity
Imaging For Geothermal Groundwater Characterization: Hammam Sayala Hot Spring
Case Study (NW Tunisia). Journal of African Earth Sciences, vol. 134, 292–298,
DOI: 10.1016/j.jafrearsci.2017.07.003.
16.
Marwan., Idroes,R., Yanis, M.,
Idroes, G.M., Syahriza. (2021). A Low-Cost UAV Based Application For Identify
and Mapping a Geothermal Feature in Ie Jue Manifestation, Seulawah Volcano,
Indonesia. International Journal of GEOMATE, vol. 20, no. 80, 135–142, DOI:
10.21660/2021.80.j2044.
17.
Yanis, M., Abdullah, F., Zaini,
N., Ismail, N. (2021). The Northernmost Part Of The Great Sumatran Fault Map
And Images Derived From Gravity Anomaly. Acta Geophysica, vol. 69, no. 3,
795–807, DOI: 10.1007/s11600-021-00567-9.
18.
Yanis, M., Abdullah, F., Yenny
A., Zainal, M., Abubakar M., Ismail, N. (2020). Continuity of Great Sumatran
Fault in the Marine Area revealed by 3D Inversion of Gravity Data. Jurnal
Teknologi, vol. 83, no. 1, 145–155, DOI: 10.11113/jurnalteknologi.v83.14824.
19.
Sieh, K., Natawidjaja, D.
(2000). Neotectonics Of The Sumatran Fault, Indonesia. Journal of Geophysical
Research: Solid Earth, vol. 105, no. B12, 28295–28326, DOI : 10.1029/2000JB900120.
20.
Rizal, M., Ismail, N., Yanis,
M., Zainal, M., Surbakti, M.S. The 2d Resistivity Modelling On North Sumatran
Fault Structure By Using Magnetotelluric Data. Iop Conference Series: Earth And
Environmental Science, p. 012036.
21.
Ismail, N., Yanis, M., Idris,
S., Abdullah, F., Hanafiah, B. (2017). Near-Surface Fault Structuresof the
Seulimuem Segment Based on Electrical Resistivity Model. Journal of Physics:
Conference Series, p. 012016.
22.
Bennett, M.R., Doyle P.
(Geology On Your Doorstep). Geology Society, p. 270.
23.
Yanis, M., Marwan., Paembonan,
A.Y., Yudhyantoro, Y., Rusydy., Idris, S., Asrillah. (2022). Geophysical and
Geotechnical Approaches in Developing Subsurface Model for Gas Power Plant
Foundation. Indian Geotechnical Journal, vol.52, 237-247, DOI:
10.1007/s40098-021-00559-y.
24.
Yanis, M., Bakar, M.A., Ismail,
N. (2017). The Use of VLF-EM and Electromagnetic Induction Methods for Mapping
the Ancient Fort of Kuta Lubok as Tsunami Heritage i. 23rd European Meeting of
Environmental and Engineering Geophysics, p. 1-5.
25.
Karous, M., Hjelt, S.E. (1983).
Linear Filtering of VLF Dip-Angle Measurements. Geophysical Prospecting, vol.
31, no. 5, 782–794, DOI: 10.1111/j.1365- 2478.1983.tb01085.x.
26.
Yanis, M., Zainal, M., Marwan,
Ismail, N. (2019). Delineation of Buried Paleochannel Using EM Induction in
Eastern Banda Aceh, Indonesia. 81st EAGE Conference and Exhibition 2019, p.
1-5.
27.
Majumdar, R.K. Majumdar, N.,
Mukherjee, A.L. (2000). Geoelectric investigations in Bakreswar geothermal
area, West Bengal, India. Journal of Applied Geophysics, vol. 45, 187-202, DOI
: 10.1016/S0926-9851(00)00028-8.
28.
Sungkono., Husein, A.,
Prasetyo, H., Bahri, A.S., Santos, F.A.M., Santosa, B.J. (2014). The VLF-EM
Imaging Of Potential Collapse On The LUSI Embankment. Journal of Applied Geophysics,
vol. 109, 218–232, DOI: 10.1016/j.jappgeo.2014.08.004.
29.
Idris, S., Syukri, M.,
Surbakti, M.S., Marwan., Muchlis., Rusydy, I., Aflah, N. (2018). Analysis Of
Shallow Subsurface Structure At Geothermal Area Of Ie Jue Using Resistivity
Method. Jurnal Natural, vol. 18, no.1, 18-21, DOI: 10.24815/JN.V18I1.9676.
30.
Ismail, N., Nadra, U., Yanis,
M. (2021). Understanding Volcano Activity Using 2D Simulation Models of MT
Data. The 2nd SEA-STEM International Conference, p. 129–132.
31.
Santos, F.A.M, Mateus, A., Figureas,
J., Golcanves, M.A. (2006). Mapping
Groundwater Contamination Around A Landfill Facility Using The Vlf-Em Method -
A Case Study. Journal of Applied Geophysics, vol. 60, no.2, 115-125, DOI:
10.1016/j.jappgeo.2006.01.002
32.
Nasruddin, M., Alhamid, I.Y.,
Surachman, A.A., Sugiyono, Aditya, H.B., Mahlia, T.M.I. (2016). Potential of
geothermal energy for electricity generation in Indonesia: A review. Renewable
and Sustainable Energy Reviews, p. 733-740.
33.
Singarimbun, A., Gaffar, E.Z.,
Tofani, P. (2017). Modeling Of Reservoir Structure By Using Magnetotelluric
Method In The Area Of Mt. Argopuro, East Java, Indonesia. Journal of
Engineering and Technological Sciences, vol. 49, no. 6, 833–847, DOI:
10.5614/j.eng.technol.sci.2017.49.6.9.
34.
Vargemezis, G., 3D Geoelectrical
Model Of Geothermal Spring Mechanism Derived From VLF Measurements: A Case
Study From Aggistro (Northern Greece). 2014. Geothermics, vol. 51, 1–8, DOI:
10.1016/j.geothermics.2013.09.001.
35.
Sharma, S.P., Baranwal, V.C.
(2005). Baranwal,“Delineation Of Groundwater-Bearing Fracture Zones In A Hard
Rock Area Integrating Very Low Frequency Electromagnetic And Resistivity Data.
Journal of Applied Geophysics, vol. 57, no.2, 155-156, DOI:
10.1016/j.jappgeo.2004.10.003.
36.
Marwan, Asrillah, Yanis, M.,
Furumoto, Y. (2019). Lithological Identification Of Devastated Area By Pidie
Jaya Earthquake Through Poisson’s Ratio Analysis. International Journal of
GEOMATE, vol. 17, no. 63, 210–216, DOI: 10.21660/2019.63.77489.