Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science

CALCULATing A BEAM OF VARIABLE SECTION LYing ON AN ELASTIC FOUNDATION


DOI: 10.5937/jaes0-38800 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Serik Akhmediev
Mechanics Department, Abylkas Saginov Karaganda Technical University, Karaganda, Kazakhstan

Valentin Mikhailov
Mechanics Department, Abylkas Saginov Karaganda Technical University, Karaganda, Kazakhstan

Gulzada Tazhenova
Mechanics Department, Abylkas Saginov Karaganda Technical University, Karaganda, Kazakhstan

Madi Bakirov
Mechanics Department, Abylkas Saginov Karaganda Technical University, Karaganda, Kazakhstan

Tatiana Filippova
Mechanics Department, Abylkas Saginov Karaganda Technical University, Karaganda, Kazakhstan

Daniyar Tokanov
Kazakhstan Multidisciplinary Institute of Reconstruction and Development Republican State Enterprise on the Right of Economic Use, Karaganda, Kazakhstan

In this article, there has been studied the bending state of a reinforced concrete beam with a variable cross-sectional height along its length that rests along its entire length on a brick wall. The beam is under the action of arbitrarily located concentrated forces. The study has been performed on the basis of the original inhomogeneous differential equation of the 4th order, taking into account the external load and the bedding coefficients of the elastic foundation. Using the finite difference method, typical resolving finite difference equations have been obtained. A study of the influence of the degree of elasticity of the base, with a change in the value of the bed coefficients and elasticity parameters, was conducted. The results confirm the reliability of theoretical and practical calculations. Given theoretical provisions and applied results can be used in scientific research in the field of mechanics of a deformable solid body, as well as in practical design.

View article

1.      Chithra, J.; Nagarajan, P.; Sajith, A. (2018). Simplified method for the transverse bending analysis of twin celled concrete box girder bridges, IOP Conference Series: Materials Science and Engineering, vol. 330, no. 1, doi:10.1088/1757-899X/330/1/012118

2.      Yayli, M. Ö. (2018). Buckling analysis of Euler columns embedded in an elastic medium with general elastic boundary conditions, Mechanics Based Design of Structures and Machines, vol. 46, no. 1, 110–122, doi:10.1080/15397734.2017.1292142

3.      Civalek, Ö.; Uzun, B.; Yaylı, M. Ö.; Akgöz, B. (2020). Size-dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method, European Physical Journal Plus, vol. 135, no. 4, doi:10.1140/EPJP/S13360-020-00385-W

4.      Wstawska, I.; Magnucki, K.; Kędzia, P. (2022). Stability of three-layered beam on elastic foundation, Thin-Walled Structures, vol. 175, doi:10.1016/J.TWS.2022.109208

5.      Soltani, M. (2020). Finite element modeling for buckling analysis of tapered axially functionally graded timoshenko beam on elastic foundation, Mechanics of Advanced Composite Structures, vol. 7, no. 2, 203–218, doi:10.22075/MACS.2020.18591.1223

6.      Wang, J.; Xia, G. (2020). Vibration analysis for a modified Timoshenko beam on Winkler elastic foundation, Zhendong Yu Chongji/Journal of Vibration and Shock, vol. 39, no. 3, 30–37, doi:10.13465/J.CNKI.JVS.2020.03.005

7.      Wang, Z. N.; Zhang, Y. H. (2020). Calculation methods of transverse bending moment of box girder considering the distortional influence, Jisuan Lixue Xuebao/Chinese Journal of Computational Mechanics, vol. 37, no. 2, 151–158, doi:10.7511/JSLX20190507001

8.      Tan, Z. X.; Liu, X.; Yi, W. J. (2016). Finite element analysis of RC deep beams with openings and researching of the design method, Jisuan Lixue Xuebao/Chinese Journal of Computational Mechanics, vol. 33, no. 3, 313–320, doi:10.7511/JSLX201603006

9.      Banichuk, N.; Barsuk, A.; Ivanova, S.; Makeev, E.; Neittaanmäki, P.; Tuovinen, T. (2018). Analysis and optimization against buckling of beams interacting with elastic foundation, vol. 46, no. 5, 615–633, doi:10.1080/15397734.2017.1377619

10.   Onu, G. (2008). Finite Elements on Generalized Elastic Foundation in Timoshenko Beam Theory, Journal of Engineering Mechanics, vol. 134, no. 9, 763–776, doi:10.1061/(ASCE)0733-9399(2008)134:9(763)

11.   He, F. S.; Zhong, G. L. (2005). Bending of beams with variable section on bi-parameter elastic foundations, Xi’an Jianzhu Keji Daxue Xuebao/Journal of Xi’an University of Architecture and Technology, vol. 37, no. 2, 251–254

12.   Akhazhanov, S.; Omarbekova, N.; Mergenbekova, A.; Zhunussova, G.; Abdykeshova, D. (2020). Analytical solution of beams on elastic foundation, International Journal of GEOMATE, vol. 19, no. 73, 193–200, doi:10.21660/2020.73.51487

13.   Rao, S. S. (2019). Vibration of continuous systems, John Wiley & Sons, Inc., Hoboken, New Jersey.

14.   Schäfer, M. (2006). Computational engineering - Introduction to numerical methods, Springer Berlin, Heidelberg.

15.   Appelö, D.; Banks, J. W.; Henshaw, W. D.; Schwendeman, D. W. (2012). Numerical methods for solid mechanics on overlapping grids: Linear elasticity, Journal of Computational Physics, vol. 231, no. 18, 6012–6050. doi:10.1016/j.jcp.2012.04.008

16.   Sorochan, E. A. (1985). Foundations, Foundations and Underground Structures (in Russian), Gosstroyizdat, Moscow.

17.   Rausch, E. (1968). Machine Foundations and Other Dynamically Stressed Building Structures (in German) (2nd ed.), VDI Verlag, Dusseldorf.

18.   Bosakov, S. V. (2003). Application of B. N. Zhemochkin’s Method to Analysis of a Bendable Slab on an Elastic Bed, Soil Mechanics and Foundation Engineering 2003 40:2, vol. 40, no. 2, 48–54, doi:10.1023/A:1024484001627