Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science

Design and hydrodynamic analysis of horizontal-axis hydrokinetic turbines with three different hydrofoils by CFD


DOI: 10.5937/jaes0-25273 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Juan Diego Betancur
Instituto Tecnológico Metropolitano, Department of Mechatronics and Electromechanical, Medellín, Colombia

Juan Gonzalo Ardila
Universidad Surcolombiana, Department Agricultural Engineering, Neiva, Colombia

Edwin Lenin Chica*
Universidad de Antioquia, Department of Mechanical Engineering, Medellín, Colombia

The conversion of kinetic energy that comes from low-head water currents to electrical energy has gained importance in recent years due to its low environmental and social impact. Horizontal axis hydrokinetic turbines are one of the most used devices for the conversion of this type of energy [1], being an emerging technology more studies are required to improve the understanding and functioning of these devices. In this context, the hydrodynamic study to obtain the characteristic curves of the turbines are fundamental. This article presents the design and hydrodynamic analysis for three horizontal axis tri-blade hydrokinetic turbine rotors with commercial profiles (NACA 4412, EPPLER E817 and NRELS802). The Blade Element Momentum (BEM) was used to design three rotors. The Design Modeler, Meshing and CFX modules from the ANSYS® commercial package were used to discretize the control volumes and configure the numerical study. In addition, Grid Convergence Index (GCI) analysis was performed to evaluate the precision of the results. The computational fluid dynamics (CFD) was used to observe the behavior of the fluid by varying the speed of rotation of the turbines from 0.1 rad s-1 to 40 rad s-1, obtaining power coefficient of 0.390 to 0.435. For a maximum shaft power of 105W. In addition, it is evident that for the same conditions the rotor designed with the EPPLER E817 profile presents better performance than built with the NACA4412 and NREL S802.

View article

1. Khan, M. J., Bhuyan, G., Iqbal, M. T., & Quaicoe, J. E. (2009). Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review. Applied Energy, vol. 86, no. 10, 1823–1835, DOI:10.1016/j.apenergy.2009.02.017

2. Djorup, S., Thellufsen, J. Z., & Sorknaes, P. (2018). The electricity market in a renewable energy system. Energy, vol. 162, 148–157, DOI:10.1016/j.energy.2018.07.100

3. Nicolli, F., & Vona, F. (2019). Energy market liberalization and renewable energy policies in OECD countries. Energy Policy, vol. 128, 853–867, DOI:10.1016/j.enpol.2019.01.018

4. Erdiwansyah, Mamat, R., Sani, M. S. M., & Sudhakar, K. (2019). Renewable energy in Southeast Asia: Policies and recommendations. Science of The Total Environment, vol. 670, 1095–1102, DOI:10.1016/j.scitotenv.2019.03.273

5. Hansen, K., Breyer, C., & Lund, H. (2019). Status and Perspectives on 100% Renewable Energy Systems. Energy, vol. 175, 471–480, DOI:10.1016/j.energy.2019.03.092

6. Guney, M. S., & Kaygusuz, K. (2010). Hydrokinetic energy conversion systems: A technology status review. Renewable and Sustainable Energy Reviews, vol. 14, no. 9, 2996–3004. DOI:10.1016/j.rser.2010.06.016

7. Hoq, T., Nawshad, U. A., Islam, N., Syfullah, K., Rahman, R. (2011). Micro Hydro Power : Promising Solution for Off-grid Renewable Energy Source. International Journal of Scientific & Engineering Research, vol. 2, no. 12, 2–6.

8. Woodruff, A. (2007). An economic assessment of renewable energy options for rural electrification in Pacific Island Countries. Suva: SOPAC. Fiji Islands.

9. Khan, M. J., Iqbal, M. T., & Quaicoe, J. E. (2008). River current energy conversion systems: Progress, prospects and challenges. Renewable and Sustainable Energy Reviews, vol. 12, no. 8, 2177–2193, DOI:10.1016/j.rser.2007.04.016

10. Vermaak, H. J., Kusakana, K., & Koko, S. P. (2014). Status of micro-hydrokinetic river technology in rural applications: A review of literature. Renewable and Sustainable Energy Reviews, vol. 29, 625–633, DOI:10.1016/j.rser.2013.08.066.

11. Kaufmann, N., Carolus, T. H., & Starzmann, R. (2017). An enhanced and validated performance and cavitation prediction model for horizontal axis tidal turbines. International Journal of Marine Energy, vol. 19, 145–163, DOI:10.1016/j.ijome.2017.07.003

12. Betancur, J. D., Ruiz, A., Valdes, M. J. (2019). Cavitation in materials used in the manufacture of hydraulic turbines : review. International Journal of Civil Engineering and Technology, vol. 10, no. 04, 2251–2258.

13. Wang, W.-Q., Yin, R., & Yan, Y. (2018). Design and prediction hydrodynamic performance of horizontal axis micro-hydrokinetic river turbine. Renewable Energy, vol. 133, 91–102, DOI:10.1016/j.renene.2018.09.106 

14. Liu, P., Yu, G., Zhu, X., & Du, Z. (2014). Unsteady aerodynamic prediction for dynamic stall of wind turbine airfoils with the reduced order modeling. Renewable Energy, vol. 69, 402–409, DOI:10.1016/j.renene.2014.03.066

15. Li, X., Yang, K., Bai, J., & Xu, J. (2016). A new optimization approach to improve the overall performance of thick wind turbine airfoils. Energy, vol. 116, 202–213, DOI:10.1016/j.energy.2016.09.108

16. Shahsavarifard, M., & Bibeau, E. L. (2020). Performance characteristics of shrouded horizontal axis hydrokinetic turbines in yawed conditions. Ocean Engineering, vol. 197, DOI:10.1016/j.oceaneng.2020.106916

17. Yavuz, T., Koc, E., Kılkıs, B., Erol, O., Balas, C., & Aydemir, T. (2015). Performance analysis of the airfoil-slat arrangements for hydro and wind turbine applications. Renewable Energy, vol. 74, 414–421, DOI:10.1016/j.renene.2014.08.049

18. Goundar, J. N., Ahmed, M. R., & Lee, Y.-H. (2012). Numerical and experimental studies on hydrofoils for marine current turbines. Renewable Energy, vol. 42, 173–179, DOI:10.1016/j.renene.2011.07.048

19. Abutunis, A., Taylor, G., Fal, M., Chandrashekhara, K. (2020). Experimental evaluation of coaxial horizontal axis hydrokinetic composite turbine system. Renewable Energy, vol. 157, 232–245, DOI:10.1016/j.renene.2020.05.010

20. P Singh, P. M., & Choi, Y.-D. (2014). Shape design and numerical analysis on a 1 MW tidal current turbine for the south-western coast of Korea. Renewable Energy, vol. 68, 485–493, DOI:10.1016/j.renene.2014.02.032

21. Kim, S.-J., Singh, P. M., Hyun, B.-S., Lee, Y.-H., & Choi, Y.-D. (2017). A study on the floating bridge type horizontal axis tidal current turbine for energy independent islands in Korea. Renewable Energy, vol. 112, 35–43, DOI:10.1016/j.renene.2017.05.025

22. Zhu, W. J., Shen, W. Z., & Sorensen, J. N. (2014). Integrated airfoil and blade design method for large wind turbines. Renewable Energy, vol. 70, 172–183, DOI:10.1016/j.renene.2014.02.057

23. Aguilar, J., Rubio-Clemente, A., Velasquez, L., & Chica, E. (2019). Design and Optimization of a Multi-Element Hydrofoil for a Horizontal-Axis Hydrokinetic Turbine. Energies, vol. 12, no. 24, 4679, DOI:10.3390/en12244679

24. Chica, E., Aguilar, J., Rubio-Clemente, A. (2019). Analysis of a lift augmented hydrofoil for hydrokinetic turbines. 17th International Conference on Renewable Energies and Power Quality, vol. 17, 49–55.

25. Mycek, P., Gaurier, B., Germain, G., Pinon, G., & Rivoalen, E. (2014). Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part I: One single turbine. Renewable Energy, vol. 66, 729–746, DOI:10.1016/j.renene.2013.12.036

26. MIT, Drela, M. (2013). XFOIL, from http://web.mit.edu/drela/Public/web/xfoil/.

27. Jeffcoate, P., Whittaker, T., Boake, C., & Elsaesser, B. (2016). Field tests of multiple 1/10 scale tidal turbines in steady flows. Renewable Energy, vol. 87, 240–252, DOI:10.1016/j.renene.2015.10.004

28. Reviol, T., Kluck, S., & Bohle, M. (2018). A new design method for propeller mixers agitating non-Newtonian fluid flow. Chemical Engineering Science, vol. 190, 320–332, DOI:10.1016/j.ces.2018.06.033

29. Shi, W., Atlar, M., Norman, R., Aktas, B., & Turkmen, S. (2016). Numerical optimization and experimental validation for a tidal turbine blade with leading-edge tubercles. Renewable Energy, vol. 96, 42–55, DOI:10.1016/j.renene.2016.04.064 Ibrahim, G. M., Pope, K., & Muzychka, Y. S. (2018). Effects of blade design on ice accretion for horizontal axis wind turbines. Journal of Wind Engineering and Industrial Aerodynamics, vol. 173, 39–52, DOI:10.1016/j.jweia.2017.11.024

31. Betancur, J. D., Ardila, J. G., Ruiz, A., Chica, E. L. (2019). Aerodynamic profiles for applications in horizontal axis hydrokinetic turbines. International Journal of Mechanical Engineering and Technology, vol. 10, no. 3, 1962–1973.

32. Tian, W., Mao, Z., & Ding, H. (2017). Design, test and numerical simulation of a low-speed horizontal axis hydrokinetic turbine. International Journal of Naval Architecture and Ocean Engineering, vol. 10, no. 6, pp. 782–793, DOI:10.1016/j.ijnaoe.2017.10.006

33. Lee, J. H., Park, S., Kim, D. H., Rhee, S. H., Kim, M. C. (2012).Computational methods for performance analysis of horizontal axis tidal stream turbines. Applied Energy, vol. 98, pp. 512–523, DOI:10.1016/j.apenergy.2012.04.018

34. Zhu, F., Ding, L., Huang, B., Bao, M., & Liu, J.-T. (2020). Blade design and optimization of a horizontal axis tidal turbine. Ocean Engineering, vol. 195, DOI:10.1016/j.oceaneng.2019.106652