iipp publishingJournal of Applied Engineering Science


DOI: 10.5937/jaes16-19634
This is an open access article distributed under the CC BY-NC-ND 4.0 terms and conditions. 
Creative Commons License

Volume 16 article 563 pages: 553 - 560

Igor Koltunov*
Moscow Polytechnic University, Moscow, Russian Federation

Anton V. Panfilov
Tradition group LTD, Moscow, Russian Federation

Ivan A. Poselsky
Moscow Polytechnic University, Moscow, Russian Federation

Nikolay N. Chubukov
Tradition group LTD, Moscow, Russian Federation

Stanislav S. Matkov
Tradition group LTD, Moscow, Russian Federation

The article shows the main aspects and problematics of elaborating effective models of current diagnostics and diagnostic prognosis of the patient’s health status, who is an object of non–invasive monitoring, based on the current analysis of characteristic combinations of his/her vital signs on nosology and the results of long–term collecting, processing and semantic classifying the biomedical data.

View article

1. Drowning in Big Data? Reducing Information Technology Complexities and Costs for Healthcare Organizations. (2012). Frost & Sullivan, from https://www.emc.com/collateral/analyst–reports/frost–sullivan–reducing–information–technology–complexities–ar.pdf, accessed on 2018-09-20.

2. Song, Z., Liu, C.H., Wu, J., Ma, J., Wang, W. (2014). QoI–aware multi–task–oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, vol. 63, no. 9, 4618-4632, DOI: 10.1109/TVT.2014.2317701.

3. Banaee, H., Ahmed, M.U., Loutfi , A. (2013). Data mining for wearable sensors in health monitoring systems: A review of recent trends and challenges. Sensors, vol. 13, no. 12, 17472-17500, DOI: 10.3390/s131217472.

4. Rathi, M., Narasimhan, B. (2017). Data Mining, Soft Computing, Machine Learning and BioInspired Computing for Heart Disease Classification/Prediction – A Review, DOI: 10.23956/ijarcsse/V7I4/0156.

5. Poon, C.C., Lo, B.P., Yuce, M.R., Alomainy, A., Hao, Y. (2015). Body sensor networks: In the era of big data and beyond. IEEE Reviews in Biomedical Engineering, vol. 8, 4-16, DOI: 10.1109/RBME.2015.2427254.

6. Raghupathi, W., Raghupathi, V. (2014). Big data analytics in healthcare: promise and potential. Health Information Science and Systems, no. 2, 3, DOI: 10.1186/2047-2501-2-3.

7. Yicuan, W., Terry, L., Terry, K., Byrd, A. (2015). Big data analytics: Understanding its capabilities and potential benefits for healthcare organizations. Technological Forecasting and Social Change, vol. 126, 3-13, DOI: https://doi.org/10.1016/j.techfore.2015.12.019.

8. Zeinab Arabasadi, Roohallah Alizadehsani, Mohamad Roshanzamir, Hossein Moosaei. (2017). Computer aided decision making for heart disease detection using hybrid neural network–Genetic algorithm. Computer Methods and Programs in Biomedicine, vol. 141, 19-26, DOI: 10.1016/j.cmpb.2017.01.004.

9. Blake, C., Merz, C. (1998). UCI Repository of Machine Learning Databases. University of California, Department of Information and Computer Science, Irvine.

10. Acharya, U.R., Fujita, H., Oh, S.L., Hagiwara, Y., Tan, J.H., Adam, M. (2017). Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals. Information Sciences, vol. 415-416, 190-198, DOI: https://doi.org/10.1016/j.ins.2017.06.027.

11. Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C.H., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation, vol. 101, no. 23, e215-e220, DOI: 10.1161/01.CIR.101.23.e215.

12. Noorian, A., Dabanloo, N.J., Parvaneh, S. (2014). Detection and localization of myocardial infarction using K–nearest neighbor classifier. Conference “Computing in Cardiology 2014”.

13. Sakr, S., Elshawi, R., Ahmed, A., Qureshi, W.T., Brawner, C., Keteyian, S., Blaha, M.J., Al-Mallah, M.H. (2017). Using machine learning on cardiorespiratory fitness data for predicting hypertension: The Henry Ford ExercIse Testing (FIT) Project. PLoS ONE, vol. 13, no. 4, e0195344, DOI: https://doi.org/10.1371/journal.pone.0195344.

14. Al–Mallah, M.H., Keteyian, S.J., Brawner, C.A., Whelton, S., Blaha, M.J. (2014). Rationale and design of the Henry Ford Exercise Testing Project (the FIT project). Clinical Cardiology, vol. 37, no. 8, 456-461, DOI: https://doi.org/10. 1002/clc.22302.

15. Kurgan, L., Cios, K.J. (2001). Discretization algorithm that uses class-attribute interdependence maximization. Proceedings of the 2001 International Conference on Artificial Intelligence, p. 980-987.

16. Kent, J.T. (1983). Information gain and a general measure of correlation. Biometrika, vol. 70, no. 1, 163-173, DOI: https://doi.org/10.1093/biomet/70.1.163.

17. Guyon, I., Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, no. 3, 1157-1182, DOI: 10.1162/153244303322753616.

18. Beltrame, T., Amelard, R., Wong, A., Hughson, R.L. (2017). Prediction of oxygen uptake dynamics by machine learning analysis of wearable sensors during activities of daily living. Scientific Reports, no. 7, 45738, DOI: 10.1038/srep45738.

19. Webster, E., Sukaviriya, N., Chang, H.-Y., Kozloski, J. (2017). Predicting cognitive states from wearable recordings of autonomic function. IBM Journal of Research and Development, vol. 61, no. 2/3, 2:1-2:11, DOI: 10.1147/JRD.2017.2648698.

20. Apache Hadoop, from http://hadoop.apache.org/, accessed on 2018-09-21.

21. Chen, M., Ma, Y., Song, J., Lai, C.-F., Hu, B. (2016). Smart clothing: Connecting human with clouds and big data for sustainable health monitoring. Mobile Networks and Applications, vol. 21, no. 5, 825-845, DOI: https://doi.org/10.1007/s11036–016–0745–1.