iipp publishingJournal of Applied Engineering Science


DOI 10.5937/jaes17-18748
This is an open access article distributed under the CC BY-NC-ND 4.0 terms and conditions. 
Creative Commons License

Volume 17 article 584 pages: 107 - 115

Anna Szafarczyk
AGH University of Science and Technology

The process of landslides is often carried out over long periods of time and is conditioned by the action of three groups of factors: an accidental, cyclical and main factor. The separation of the long-term tendency (isolation of the main factor) requires elimination of the seasonal (cyclic) and accidental factor. The article presents the results of geodesic surveys of a selected landslide, which was activated by opencast mining. Geodetic measurements were carried out with a ground based radar interferometer in GBInSAR technology and a GPS receiver in RTN technology. For the obtained data, a method was presented that allows to isolate a cyclic factor in a 24-hour period. The elimination of the cyclical factor allowed to distinguish the long-term tendency and determine the nature of the trend.

View article
  1. Varnes, DJ. (1978). Slope movement types and processes. In Special report 176: Landslides: Analysis and Control, Transportation Research Board, Washington, D.C.
  2. Cruden D.M., Varnes D.J. (1996), Landslide types and processes. In Special Report 247: Landslides: Investigation and Mitigation, Transportation Research Board, Washington D.C.
  3. Savarensky F.P.(1981), Landslides, landslides classifi cation. Engineering geology reference book. “Nedra” Publishers, Moscow, p. 87-88.
  4. Pavlov A. P.(1968), Landslide general classifi cations. Engineering geology reference book. “Nedra” Publishers, Moscow, p. 181.
  5. Sharpe C.F.(1938), Landslides and related phenomena. New York: Columbia University Press, p. 1370.
  6. Bydłosz J., Hanus P. (2013), The impact of landslide areas on municipal spatial planning. Real Estate Management and Valuation. vol. 21, no. 4, pp. 5-10. DOI: 10.2478/remav-2013-0031.
  7. Puniach E., Bieda A., Ćwiąkała P., Kwartnik Pruc A., Parzych P. (2018), Use of unmanned aerial vehicles (UAVs) for updating farmland cadastral data in areas subject to landslides. ISPRS International Journal of Geo-Information. vol. 7 iss. 8 art. no. 331, pp. 1–19.
  8. Pilecki Z. (2017), Basic principles for the identifi cation of landslides using geophysical methods. E3S Web of Conferences, 24 (2017) 01001, DOI: https:// doi.org/10.1051/e3sconf/20172401001
  9. Kroh P., Strus P., Gorczyca E., Wronska-Walach D., Dlugosz M. (2014) Identyfi kacja osuwisk w gminie Łososina Dolna na podstawie danych lotniczego skanowania laserowego. Problemy Ekologii Krajobrazu. vol. 38, pp. 61-75.
  10. Wojciechowski T., Perski Z. (2008) Zastosowanie satelitarnej interferometrii radarowej do określenia aktywności osuwisk obrzeżenia Kotliny Sądeckiej. Archiwum Fotogrametrii, Kartografi i i Teledetekcji. Vol. 18b, pp. 697-706
  11. Ilcewicz-Stefaniuk D., Lemberger M., Magiera J., Rybicki S., Słomka T., Stefaniuk M. (2004) Cataloguing natural geological hazards over Poland's territory. Polish Geological Institute Special Papers. vol. 15, pp. 53–60.
  12. Rybicki, S., Czarnecki L., Organiściak B. (2000) Zagrożenia geotechniczne w KWB „Bełchatów”, ich uwarunkowania, możliwości prognozy oraz zapobiegania. Materiały Sympozjum „25 lat doświadczeń KWB Bełchatów”. Bełchatów 17-18 stycznia 2000. SITG KWB „Bełchatów”, 19-26.
  13. Terzaghi K.: Mechanism of Landslides, Engineering Geology (Barkey) November 1950, reprintFrom Theory to practice In soil mechanics. N. York, J. 1950
  14. Wysokiński L. (1980) Kryterium dynamiki zboczy. Biuletyn Instytutu Geologicznego Nr 324.
  15. Czarnecki L., Jończyk W., Organiściak B., Wysokiński L. (2007), Zagrożenia geotechniczne w wyrobisku górniczym kopalni Bełchatów. ITB Warszawa.
  16. Maciaszek J., Gawałkiewicz R., Szafarczyk A.(2015), Surveying methods of landslide studies (in Polish). Wydawnictwa AGH. p. 123.
  17. Gili, J.A., Corominas, J., & Rius, J. (2000). Using Global Positioning System techniques in landslide monitoring. Engineering Geology, 55(3), 167-192. doi:10.1016/s0013-7952(99)00127-1
  18. Tarchi, D., Casagli, N., Fanti, R., Leva, D.D., Luzi, G., Pasuto, A., . . . Silvano, S. (2003). Landslide monitoring by using ground-based SAR interferometry: an example of application to the Tessina landslide in Italy. Engineering Geology, 68(1-2), 15-30. doi:10.1016/s0013-7952(02)00196-5
  19. Monserrat, O., Crosetto, M., & Luzi, G. (2014). A review of ground-based SAR interferometry for deformation measurement. ISPRS Journal of Photogrammetry and Remote Sensing, 93, 40-48. doi:10.1016/j. isprsjprs.2014.04.001
  20. Bozzano, F., Cipriani, I., Mazzanti, P., & Prestininzi, A. (2011). Displacement patterns of a landslide affected by human activities: insights from groundbased InSAR monitoring. Natural Hazards, 59(3), 1377-1396. doi:10.1007/s11069-011-9840-6
  21. Luzi, G., Pieraccini, M., Mecatti, D., Noferini, L., Macaluso, G., Galgaro, A., & Atzeni, C. (2006). Advances in groundbased microwave interferometry for landslide survey: a case study. International Journal of Remote Sensing, 27(12), 2331-2350. doi:10.1080/01431160600554975
  22. Noferini, L., Pieraccini, M., Mecatti, D., Macaluso, G., Atzeni, C., Mantovani, M., . . . Tagliavini, F. (2007). Using GB-SAR technique to monitor slow moving landslide. Engineering Geology, 95(3-4), 88- 98. doi:10.1016/j.enggeo.2007.09.002
  23. Lenda, G., Ligas, M., Lewińska, P., & Szafarczyk, A. (2016). The use of surface interpolation methods for landslides monitoring. KSCE Journal of Civil Engineering, 20(1), 188-196. doi:10.1007/s12205-015- 0038-4
  24. Szafarczyk, A., & Gawałkiewicz, R. (2016). Case study of the tensor analysis of ground deformations evaluated from geodetic measurements in landslide area. Acta Geodynamica et Geomaterialia, 201-211. doi:10.13168/agg.2016.0003
  25. Szafarczyk, A. Rybicki S. et al (2013), Study of the kinematics of surface mass movements using ground-based radar interferometry, Wydawnictwa AGH, ISBN: 978-83-7464-648-2, p. 126.