iipp publishingJournal of Applied Engineering Science

BENEFIT OF THE INTEGRATION OF VISIBLE AND THERMAL INFRARED IMAGES FOR THE SURVEY AND ENERGY EFFICIENCY ANALYSIS IN THE CONSTRUCTION FIELD



DOI 10.5937/jaes17-22080
This is an open access article distributed under the CC BY-NC-ND 4.0 terms and conditions. 
Creative Commons License

Volume 17 article 647 pages: 571- 578

Claudio Parente* 
University of Naples "Parthenope", Italy

Massimiliano Pepe 
Politecnico di Bari, Italy

Infrared thermography is a non-invasive and non-contact technique that provides surface temperature distribution by measuring infrared radiation emitted by a body. The instrument that can determine the surface temperature of the object indicated is the thermal-camera. Nowadays, the use of thermal imaging is increasingly widespread and its application fields are numerous, especially in the construction environment. In this way, using a modern thermal-camera, it has showed in this paper the high performance of temperature map generated by these instruments. The integration of thermal camera with optical sensors allows to obtain, by a suitable methodology, a high quality of thermal image. Indeed, taking in account large building, it is impossible to cover the whole building and at the same time acquire with a high geometric resolution in relation to the modern thermal camera. In order to identify anomalies temperature on large and modern structure, a case study of the use of thermal images building is showed in the manuscript. Indeed, the knowledge of temperature distribution on the facade of the building provides very useful information to discover many hidden conditions related to the building performance, maintenance and energy efficient. Because the construction field accounts for 40% of energy demand in Europe, the use of thermal images in this environment provides an important contribute in the analyses process of temperature archived on the buildings.

View article

1. Lerma, J. L., Mileto, C., Vegas, F., & Cabrelles, M. (2007, October). Visible and thermal IR documentation of a masonry brickwork building. In XXI International CIPA Symposium (pp. 01-06).

2. Zissis, G. J., & Wolfe, W. L. (1978). The infrared handbook. Infrared Information And Analysis Center Ann Arbor Mi.

3. Chrzanowski, K. (2010). Testing Thermal Imagers Practical Guidebook.

4. Usamentiaga, R., Venegas, P., Guerediaga, J., Vega, L., Molleda, J., & Bulnes, F. G. (2014). Infrared thermography for temperature measurement and non-destructive testing. Sensors, 14(7), 12305-12348. https://doi.org/10.3390/s140712305

5. Borrmann, D., Afzal, H., Elseberg, J., & Nüchter, A. (2012). Mutual calibration for 3D thermal mapping. IFAC Proceedings Volumes, 45(22), 605-610.

6. Oreifej, O. J., Cramer, A.,  Zakhor A.  (2014). Automatic generation of 3d thermal maps of building interiors. ASHRAE transactions, 120, C1.

7. Scaioni, M., Rosina, E., L'Erario, A., & Dìaz-Vilariño, L. (2017). INTEGRATION OF INFRARED THERMOGRAPHY AND PHOTOGRAMMETRIC SURVEYING OF BUILT LANDSCAPE. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 42. https://doi.org/10.5194/isprs-archives-XLII-5-W1-153-2017

8. Maset, E., Fusiello, A., Crosilla, F., Toldo, R., & Zorzetto, D. (2017). Photogrammetric 3d Building Reconstruction from Thermal Images. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 4, 25.. https://10.5194/isprs-annals-IV-2-W3-25-2017

9. Quattrochi, D. A., & Luvall, J. C. (2009). Thermal remote sensing in Earth science research (pp. 64-78). SAGE Publications Ltd.: London, UK.

10. Jensen, J. R. (2007). Remote sensing of the environment: an earth resource perspective: Pearson Prentice Hall. Upper Saddle River, NJ.

11. Prakash, A. (2000). Thermal remote sensing: concepts, issues and applications. International Archives of Photogrammetry and Remote Sensing, 33(B1; PART 1), 239-243.

12. Reddy, M. A., & Reddy, A. (2008). Textbook of remote sensing and geographical information systems (p. 453). Hyderabad: BS publications.

13. Bergman, T. L., Incropera, F. P., DeWitt, D. P., & Lavine, A. S. (2011). Fundamentals of heat and mass transfer. John Wiley & Sons.

14. Fluke, Fluke Building Diagnostic Thermal Imagers, Datasheet. Available on line: http://www.myflukestore.com/pdfs/cache/www.myflukestore.com/fluke/thermal_imager/tir1_9hz/datasheet/fluke_tir1_9hz_thermal
_imager_datasheet.pdf,  2017  (last accessed 19 November 2017).

15. Barreira, E., de Freitas, V. P., Delgado, J. M. P. Q., & Ramos, N. M. M. (2012). Thermography applications in the study of buildings hygrothermal behaviour. In Infrared Thermography. InTech. https://doi.org/10.5772/28282

16. Koretsky, G. M., Nicoll, J. F., & Taylor, M. S. (2013). A tutorial on electro-optical/infrared (EO/IR) theory and systems (No. IDA-D-4642). INSTITUTE FOR DEFENSE ANALYSES ALEXANDRIA VA.

17. Ball, M., & Pinkerton, H. (2006). Factors affecting the accuracy of thermal imaging cameras in volcanology. Journal of Geophysical Research: Solid Earth, 111(B11).https://doi.org/10.1029/2005JB003829

18. Luhmann, T., Robson, S., Kyle, S., & Boehm, J. (2013). Close-range photogrammetry and 3D imaging. Walter de Gruyter.

19. Pepe, M., & Parente, C. (2017). Cultural Heritage Documentation in Sis Environment: an application for" Porta Sirena" in the archaeological site of Paestum. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 42. https://doi.org/10.5194/isprs-archives-XLII-5-W1-427-2017.

20. Pepe, M., Fregonese, L., & Scaioni, M. (2018). Planning airborne photogrammetry and remote-sensing missions with modern platforms and sensors. European Journal of Remote Sensing, 51(1), 412-435.https://doi.org/10.1080/22797254.2018.1444945

21. Al-ISMAEIL, K. (2011). Structure from Motion & Camera Self-Calibration (Doctoral dissertation, Université de Bourgogne).

22. Fraser, C. (2015). Advances in Close-Range Photogrammetry, Photogrammetric Week'15.

23. Nunak, T., Rakrueangdet, K., Nunak, N., & Suesut, T. (2015, March). Thermal image resolution on angular emissivity measurements using infrared thermography. In Proceedings of the International MultiConference of Engineers and Computer Scientists (Vol. 1, pp. 18-20).

24. Lagüela, S., Armesto, J., Arias, P., & Herráez, J. (2012). Automation of thermographic 3D modelling through image fusion and image matching techniques. Automation in Construction, 27, 24-31.https://doi.org/10.1016/j.autcon.2012.05.011

25. Luhmann, T., Piechel, J., & Roelfs, T. (2013). Geometric calibration of thermographic cameras. In Thermal Infrared Remote Sensing (pp. 27-42). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6639-6_2

26. Rahmani, S., Strait, M., Merkurjev, D., Moeller, M., & Wittman, T. (2010). An adaptive IHS pan-sharpening method. IEEE Geoscience and Remote Sensing Letters, 7(4), 746-750. https://doi.org/10.1109/LGRS.2010.2046715

27. Pepe, M., & Parente, C. [2018]. BURNED AREA RECOGNITION BY CHANGE DETECTION ANALYSIS USING IMAGES DERIVED FROM SENTINEL-2 SATELLITE: THE CASE STUDIO OF SORRENTO PENISOLA, ITALY. Journal of Applied Engineering Science, 16(2), 225-232.

28. Parente, C., & Pepe, M. (2017). Influence of the weights in IHS and Brovey methods for pan-sharpening WorldView-3 satellite images. International Journal of Engineering & Technology, 6(3), 71-77. https://doi.org/10.14419/ijet.v6i3.7702