Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science


DOI 10.5937/jaes17-21470
This is an open access article distributed under the CC BY-NC-ND 4.0 terms and conditions. 
Creative Commons License

Volume 17 article 651 pages: 599 - 609

Gulnara Zhetessova 
Karaganda state technical university, Kazakhstan

Vasiliy Yurchenko 
Karaganda state technical university, Kazakhstan

Tatyana Nikonova*
Karaganda state technical university, Kazakhstan

Olga Zharkevich 
Karaganda state technical university, Kazakhstan

The given article provides material on the development of the CADS applied for production processes of component part machining for single-piece production and repair conditions. The article describes technique used to organize a data flow and hose methods of machining which cannot be applied under these conditions of machining. This research uses graph theory. The article describes the developed algorithm for machining planning of details. A mathematical model of transitions in the technological process for the processing of parts has been obtained.The developed design CADS reduces the number of errors in the development of production processes. The article describes database for machining planning. In order to form input data, knowledge of production processes of analogous machine parts or products production is not required. Thus developed models of system determines of machine-part production stages. This system gives schemes of its basing, a set of bases and an order of their preparation and  forming of schemes of technological dimensional chains. This system counts and recounts interoperational dimensions. Developed models and system allows to increase amount of output information to the level of operational flow charts. The designed system gives the chance of its use in modern multiproduct. This system is universal, multifunctional.

View article

1. Schaede, C., Seifermann S., Metternich, J. (2018). Automated generation of CNC programs for manufacturing of individualized products. 51st CIRP Conference on Manufacturing Systems Procedia CIRP 72, p. 1251 - 1257

2. Koltunov, I., Panfilov, A. V., Poselsky, I. A., Chubukov, N. N., & Matkov, S. S. [2018]. Review of the big data technology use in the medical prognosis. Journal of Applied Engineering Science, 16(4), 553-560.

3. Illyustrirovannyiy opredelitel detaley obschemashinostroitelnogo primeneniya: rukovodyaschiy tehnicheskiy material. Klassyi 40 i 50. Obschesoyuznyiy klassifikator promyishlennoy i selskohozyaystvennoy produktsii (Moscow: Izdatelstvo standartov) p. 238.

4. Tehnologicheskiy klassifikator detaley mashinostroeniya i priborostroeniya. Moscow: Izdatelstvo standartov. Vol. 1 – p 100; Vol. II – p. 84.

5. Yakushev, A.I., Vorontsov, L.N., &Fedotov, N.N. (1986). Vzaimozamenyaemost, standartizatsiya i tehnicheskie izmereniya. Moscow: Mashinostroenie. P. 352.

6. Myagkov, V.D. (1998). Dopuski i posadki: Spravochnik. Leningrad: Mashinostroenie. Vol. 1.P. 544.

7. Kosilova, A.G., Mescheryakov, R.K., & Kalinin, M.A. Tochnostobrabotki i pripuski v mashinostroenii: Spravochniktehnologa. Moscow: Mashinostroenie. P. 288.

8. Kosilova A.G., Mescheryakov R.K. (1985) Spravochnik tehnologa-mashinostroitelya. Moscow: Mashinostroenie. P. 656.

9. Kovan V.M. (1987) Raschet pripuskov na obrabotku v mashinostroenii. Moscow: Mashgiz. P. 304.