Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science


DOI: 10.5937/jaes18-22123
This is an open access article distributed under the CC BY-NC-ND 4.0 terms and conditions. 
Creative Commons License

Volume 18 article 655 pages: 19 - 25

Daniel Aristizabal*
Faculty of Engineering, Universidad Libre Seccional Pereira, Colombia

Gloria Molina
Faculty of Engineering, Universidad Libre Seccional Pereira, Colombia

Thanks to the efforts of different public and private entities, recent years have seen a growing interest in protecting the environment and in the use of non-renewable natural resources such as tires. One of the most widely accepted ways of using non-perishable materials has been their application in the construction of civil works. This paper focuses on the assessment of test tubes made up with mixtures of fine-grained Volcanic Ash Soil and Shredded Tires (VAS-TDA) to be applied as an alternative material for low cost lightweight fills, that allow the use of the greatest quantity possible of tires. The physical and mechanical properties of specimens made with mixtures of soil and shredded tires were examined, varying the location of the site of soil extraction and tire size (Gravel Size- Sand and Gravel Size). It was determined that test tubes made up of 40% medium-sized shredded tires and 60% soil, reached low dry density values, and that increasing the content of shredded tires leads to greater plasticity and less compressibility. Similarly, resistance diminishes but only up to Californian Bearing Ratio (CBR) values appropriate for use in the nucleus and foundation of an embankment. For test tubes with a maximum content of 15% of type 2 shredded tires, there appeared to be little reduction in the resistance to the mixture, as long as a compaction energy of 2700 kN-m/m3 is applied.

View article
The authors thank Tecnoparque Pereira and TecnoAcademia Pereira for their technical and instrumental support.

1. Symeonides, D., Loizia, P. &Zorpas, (2019). Tire waste management system in Cyprus in the framework of circular economy strategy. A.A. Environ Sci Pollut Res, 1-16

2. Pathway Polymers. (2012). Sustainability in the Tire Industry.

3. IOP Conf. Series: Materials Science and Engineering 385 (2018) 012057 doi:10.1088/1757-899X/385/1/012057 The potential utilization of the rubber material after waste tire recycling J Svoboda1,2, V Vaclavik1,2, T Dvorsky1 , L Klus1,2 and R Zajac1

4. Mateos, T., & Garc, O. (n.d.). Construcción de un terraplén de carretera con neumáticos fuera de uso (NFU).

5. Liu, H. S., Mead, J. L., &Stacer, R. G. (2000). Environmental Effects of Recycled Rubber in Light-Fill Applications. Rubber Chemistry and Technology, 73(3), 551–564.

6. Mills, B., Naggar, H. El, &Valsangkar, A. (2015). Chapter 22 - North American Overview and a Canadian Perspective on the Use of Tire-Derived Aggregate in Highway Embankment Construction A2 - Indraratna, Buddhima. In J. Chu & C. B. T.-G. I. C. H. Rujikiatkamjorn (Eds.) (pp. 635–655). San Diego: Butterworth-Heinemann.

7. Shalaby, A., & Ahmed Khan, R. (2002). Temperature Monitoring and Compressibility Measurement of a Tire Shred Embankment: Winnipeg, Manitoba, Canada. Transportation Research Record: Journal of the Transportation Research Board, 1808, 67–75.

8.Elias, V., Welsh, J., WARREN, J., & Lukas, R. (2000). Ground Improvement Technical Summaries – Vol. 1 and 2. Federal Highway Administration.

9. Hataf, N., & Rahimi, M. M. (2006). Experimental investigation of bearing capacity of sand reinforced with randomly distributed tire shreds. Construction and Building Materials, 20(10), 910–916.

10. Edinçliler, A., Baykal, G., &Saygili, A. (2010). Influence of different processing techniques on the mechanical properties of used tires in embankment construction. Waste Management, 30(6), 1073–1080.

11. Cano, H., Estaire, J., &Rodríguez, R. (2011). Terraplénexperimentalconstruido con neumáticostroceados. In Jornadatécnica sobre experienciasrecientes en estructuras de tierra para infraestructurasviarias (p. 11).

12 Li, L., Xiao, H., Ferreira, P., & Cui, X. (2016). Study of a small scale tyre-reinforced embankment. Geotextiles and Geomembranes, 44(2), 201–208.

13. Aderinlewo, O., & Okine, N. A. (2009). Sensitivity analysis of a scrap tire embankment using Bayesian influence diagrams. Construction and Building Materials, 23(3), 1446–1455.

14. Hidalgo Signes, C., Martínez Fernández, P., MedelPerallón, E., &Insa Franco, R. (2015). Characterisation of an unbound granular mixture with waste tyre rubber for subballast layers. Materials and Structures/Materiaux et Constructions, 48(12), 3847–3861.

15. Zornberg, J. G., Cabral, A. R., &Viratjandr, C. (2004). Behaviour of tire shred – sand mixtures. Canadian Geotechnical Journal, 41(2), 227–241.

16. Yoon, S. (2006). Mechanical response of tire shred-sand mixtures and applications to geotechnical structures. Purdue University.

17. ASTM International. (2007). ASTM D421-85. Standard Practice for Dry Preparation of Soil Samples for Particle-Size Analysis and Determination of Soil Constants.

18.ASTM International. (1998). ASTM D 2217-85. Standard Practice for Wet Preparation of Soil Samples for Particle-Size Analysis and Determination of Soil Constants.

19. ASTM International. (2017). ASTM D4318-17. Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils.

20.ASTM International. (2010). ASTM D854-10. Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer.

21. ASTM International. (2006). ASTM D5084-16a. Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter.

22. ASTM International. (2006). ASTM D2434-68. Standard Test Method for Permeability of Granular Soils.

23. ASTM International. (2009). ASTM C535-09. Standard Test Method for Resistance to Degradation of Large-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine.

24. ASTM International. (2005). ASTM C 88-05. Standard Test Method for Soundness of Aggregates by Use of Sodium Sulfate or Magnesium Sulfate.

25. Lizcano, A., & Herrera, M. C. (2006). Suelos derivados de cenizas volcánicas en Colombia. Rev. Int. de Desastres Naturales, Accidentes E Infraestructura Civil, 6(2), 167–198.

26.Lizcano, A., & Herrera, M. C. (2006). Suelos derivados de cenizas volcánicas en Colombia. Rev. Int. de Desastres Naturales, Accidentes E Infraestructura Civil, 6(2), 167–198.

27. Humphrey, D., & Manion, W. (1992). Properties of tire chips for lightweight fill. InProceedings of the Conference on Grouting, Soil Improvement and GeosyntheticsGeotechnical Special (pp. 1344–1355). New York

28.Yura, M. (2014). Propiedadeshidráulicas del suelo.

29. U.S. Department of the Navy, Foundations and Earth Structures, DesignManual 7.2, Naval Facilities Engineering Command, Alexandria, VA, 1982.

30. Orlando, F., & Cubillos, G. (2007). Análisis de asentamientos secundarios en los suelos de la zona del Lago en la ciudad de Bogotá D.C. Universidad de la Salle.