Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science


DOI: 10.5937/jaes18-24711
This is an open access article distributed under the CC BY-NC-ND 4.0 terms and conditions. 
Creative Commons License

Nururrahmah Hammado*
School of Postgraduate Studies, Diponegoro University, Semarang, Indonesia

Sudarno Utomo
Diponegoro University, Faculty of Engineering, , Semarang, Indonesia

Diponegoro University, Faculty of Engineering, Semarang, Indonesia

Powered hand tools reduce the time spent on tasks; however, they generate vibrations which may pose significant risk to operators’ health. In this study, the impact of power hand tools on users was considered. Five basic power hand tools were identified and the impact of vibration was assessed on users. Digital vibration meter was used to measure the vibration produced on five operators while operating the identified power tools. Values obtained from each operator were imputed to the hand-arm vibration calculator to determine daily exposure limit and total exposure point for each of them. Results obtained indicate daily exposure limit of 4.08, 11.64, 21.06, 46.96 and 62.36 m/s2; and average total exposure point of 261, 2242, 7107, 35436, and 63781; for hand milling machine, hand drilling machine, grinding machine, hand mower, and lawn mower respectively. Among the power tools examined, it is only the exposure vibration from hand milling machine that was within the recommended acceptable daily exposure limit of 5 m/s2 and total exposure point of 400. Measures were suggested to lessen the exposure time and vibration magnitude the operators are exposed to so as to reduce the probability of hand-arm vibration syndrome (HAVS) among the operators.

View article

This research was supported by LPDP as a funding sponsorship for financial support.

1. Perkebunan, D.J. (2016). Statistik perkebunan Indonesia 2015-2017. Direktorat Jendral Perkebunan Kementerian Pertanian, Jakarta.

2. Nggobe, M. (2005). The utilizing by product of sago as feed for poultry in Papua. Eight International Sago Symposium in Jayapura, Indonesia. Japan Society for the Promotion Science.

3. Karim, A., Tie, A., Manan, D., Zaidul, I. (2008). Starch from the sago (Metroxylon sagu) palm tree properties, prospects, and challenges as anew industrial source for food and other uses. Comprehensive Reviews in Food Science and Food Safety,vol. 7, no.3, 215-228, DOI: 10.1111/j.1541-4337.2008.00042.x.

4. Greenhill, A.R. (2006). Food safety and security of sago starch in rural Papua New Guinea, James Cook University, from au/2023/2.

5. Awg-Adeni, D., Abd-Aziz, S., Bujang, K., Hassan, M. (2010). Bioconversion of Sago Residue into Value Added Products. African Journal of Biotechnology, vol. 9, no.14, 2016-2021.

6. Abd-Aziz, S. (2002). Sago starch and its utilisation. Journal of Bioscience and Bioengineering, vol. 94, no. 6, 526-529, DOI: 10.1016/S1389- 1723(02)80190-6.

7. Nururrahmah, H., Sudarno, U. (2018). Physicochemical characteristic of sago solid waste and sago wastewater in Luwu Regency. E3S Web of Conferences. EDP Sciences. vol. 73, p. 07007, DOI: 10.1051/e3sconf/20187307007.

8. Lim, J.K. (2006). Preparation and characterization of carboxymethyl sago waste and its hydrogel, Universiti Putra Malaysia.

9. Linggang, S., Phang, L., Wasoh, M., Abd-Aziz, S. (2012). Sago pith residue as an alternative cheap substrate for fermentable sugars production. Applied Biochemistry and Biotechnology, vol. 167, no. 1, 122-131, DOI: 10.1007/s12010-012-9592-0.

10. Utami, A.S., Sunarti, T.C., Isono, N., Hisamatsu, M., Ehara, H. (2014). Preparation of biodegradable foam from sago residue. Sago Palm, vol. 22, 1-5.

11. Dhiputra, K., Made, I., Jonatan Numberi, J., Ekayuliana, A. (2015). Pemanfaatan ampas ela sagu sebagai bioetanol untuk kebutuhan bahan bakar rumah tangga di Provinsi Papua.Seminar Nasional Tahunan Teknik Mesin Indonesia XIV.

12. Karthika, C., Vennilamani, N., Pattabhi, S., Sekar, M. (2010). Utilization of sago waste as an adsorbent for the removal of Pb (II) from aqueous solution: kinetic and isotherm studies. International Journal of Engineering Science and Technology,vol. 2, no. 6, 1867- 1879, DOI:

13. Sangaji, I. (2009). Mengoptimalkan pemanfaatan ampas sagu sebagai pakan ruminansia melalui biofermentasi dengan jamur tiram. Pleurotus ostreatus dan amoniasi. Bogor Agricultural University.

14. Tirta, P., Indrianti, N., Ekafi tri, R. (2013). Potensi tanaman sagu (Metroxylon sp.) dalam mendukung ketahanan pangan di Indonesia. Jurnal Pangan,vol. 22, no. 1, 61-76, DOI: 10.33964/jp.v22i1.78.

15. Prastowo, B. (2015). Potensi sektor pertanian sebagai penghasil dan pengguna energi terbarukan. Perspektif,vol. 6, no. 2, 85-93, DOI: 10.21082/p. v6n2.2007.

16. Gunam, I.B.W., Wartini, N.M., Anggreni, A., Suparyana, P.M. (2011). Delignifi kasi ampas tebu dengan larutan natrium hidroksida sebelum proses sakaraifi kasi secara enzimatis menggunakan enzim selulase kasar dari Aspergillus niger Fnu 6018. Jurnal Teknologi Indonesia,vol. 34, no. 3, 24-32.

17. Mardina, P., Talalangi, A.I., Sitinjak, J.F., Nugroho, A., Fahrizal, M.R. (2013). Pengaruh proses delignifi kasi pada produksi glukosa dari tongkol jagung dengan hidrolisis asam encer. Konversi,vo. 2, no. 2, 17-23.

18. Mtui, G.Y. (2009). Recent advances in pretreatment of lignocellulosic wastes and production of value added products. African Journal of Biotechnology, vol. 8, no. 8, 1398-1415.

19. Chandra, R., Takeuchi, H., Hasegawa, T., Kumar, R. (2012). Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments. Energy, vol. 43, no. 1, 273-282, DOI: 10.1016/ 2012.04.029.

20. Liew, L.N., Shi, J., Li, Y. (2011). Enhancing the solid- state anaerobic digestion of fallen leaves through simultaneous alkaline treatment. Bioresource Technology, vol. 102, no. 19, 8828-8834, DOI: 10.1016/j. biortech.2011. 07.005.

21. Mirahmadi, K., Kabir, M.M., Jeihanipour, A., Karimi, K., Taherzadeh, M. (2010). Alkaline pretreatment of spruce and birch to improve bioethanol and biogas production. BioResources, vol. 5, no. 2, 928-938.

22. Antonopoulou, G., Stamatelatou, K., Lyberatos, G. (2010). Exploitation of rapeseed and sunflower residues for methane generation through anaerobic digestion: the effect of pretreatment. Chemical Engineering Transactions, vol. 20, 253-258, DOI: 10.3303/CET1020043.

23. Monlau, F., Latrille, E., Da Costa, A.C., Steyer, J.- P., Carrere, H. (2013). Enhancement of methane production from sunflower oil cakes by dilute acid pretreatment. Applied Energy,vol. 102, 1105-1113, DOI: 10.1016/j.apenergy.2012. 06.042.

24. Keshwani, D.R., Cheng, J.J. (2010). Microwav based alkali pretreatment of switchgrass and coastal bermudagrass for bioethanol production. Biotechnology Progress,vol. 26, no. 3, 644-652, DOI: 10.1002/ btpr.371.

25. Mood, S.H., Golfeshan, A.H., Tabatabaei, M., Jouzani, G.S., Najafi , G.H., Gholami, M., Ardjmand, M. (2013). Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renewable and Sustainable Energy Reviews,vol. 27, 77-93, DOI: 10.1016/j.rser.2013.06.033.

26. Cesaro, A., Naddeo, V., Amodio, V., Belgiorno, V. (2012). Enhanced biogas production from anaerobic codigestion of solid waste by sonolysis. Ultrasonics Sonochemistry, vol. 19, no. 3, 596-600, DOI: 10.1016/j.ultsonch.2011.09.002.

27. Fatriasari, W., Syafi i, W., Wistara, N., Syamsu, K., Prasetya, B. (2016). Lignin and cellulose changes of betung bamboo (Dendrocalamus asper) pretreated microwave heating. International Journal on Advanced Science, Engineering and Information Technology,vol. 6, no. 2, 186-195, DOI: 10.18517/ ijaseit.6.2.688.

28. Sapci, Z. (2013). The effect of microwave pretreatment on biogas production from agricultural straws. Bioresource Technology,vol. 128, 487-494, DOI: 10.1016/j.biortech.2012.09.094.

29. Fatriasari, W., Syafi i, W., Wistara, N., Syamsu, K., Prasetya, B. (2014). The characteristic changes of betung bamboo (Dendrocalamus asper) pretreated by fungal pretreatment. Int J Renew Energy Dev,vol. 3, no. 2, 133-143, DOI: 10.14710/ijred.3.2. 133-143.

30. Ishola, M., Millati, R., Syamsiah, S., Cahyanto, M., Niklasson, C., Taherzadeh, M. (2012). Structural changes of oil palm empty fruit bunch (OPEFB) after fungal and phosphoric acid pretreatment. Molecules, vol.17, no. 12, 14995-15012, DOI: 10.3390/ molecules171214995.

31. Risanto, L., Anita, S., Fatriasari, W., Prasetyo, K. (2012). Biological pretreatment of oil palm empty fruit bunch fi ber by mixed culture two white rot fungi. Proceedings of the 5th Indonesian Biotechnology Conference An International Forum. Mataram, Indonesia. pp. 4-7.

32. Zhang, Q., He, J., Tian, M., Mao, Z., Tang, L., Zhang, J., Zhang, H. (2011). Enhancement of methane production from cassava residues by biological pretreatment using a constructed microbial consortium. Bioresource Technology,vol. 102, no. 19, 8899-8906, DOI: 10.1016/j.biortech.2011. 06.061.

33. Romano, R.T., Zhang, R., Teter, S., McGarvey, J.A. (2009). The effect of enzyme addition on anaerobic digestion of JoseTall Wheat Grass. Bioresource Technology,vol. 100, no. 20, 4564-4571, DOI: 10.1016/j.biortech.2008.12.065.

34. Zieminski, K., Romanowska, I., Kowalska, M. (2012). Enzymatic pretreatment of lignocellulosic wastes to improve biogas production. Waste Management,vol. 32, no. 6, 1131-1137, DOI: 10.1016/j.wasman. 2012.01.016.

35. Matin, H.H.A. (2018). Biogas production from rice husk waste by using solid state anaerobic digestion (SSAD) method. E3S Web of Conferences. EDP Sciences. vol. 31, pp. 02007, DOI: 10.1051/e3sconf/ 2018 3102007.

36. Fatriasari, W., Hermiati, E. (2016). Lignocellulosic biomass for bioproduct: its potency and technology development. Journal of Lignocellulose Technology, vol. 1, no. 1, 1-14.

37. Liu, Q., Wang, S., Zheng, Y., Luo, Z., Cen, K. (2008). Mechanism study of wood lignin pyrolysis by using TG–FTIR analysis. Journal of Analytical and Applied Pyrolysis,vol. 82, no. 1, 170-177, DOI: 10.1016/j. jaap.2008.03.007.

38. Novia, S., Purboyo, G.T. (2017). Pengaruh konsentrasi natrium hidroksida saat pretreatment dan waktu fermentasi terhadap kadar bioetanol dari daun nanas. Jurnal Teknik Kimia,vol. 21, no. 3, 16-26.

39. Permana, W.S., Nugraha, W.D., Syafrudin, S. (2017). Pengaruh perlakuan pendahuluan NaOH terhadap produksi biogas dari limbah sekam padi dengan metode Solid State Anaerobic Digestion (SS-AD). Jurnal Teknik Lingkungan,vol. 6, no. 3, 1-11.

40. Saritha, M., Arora, A. (2012). Biological pretreatment of lignocellulosic substrates for enhanced delignifi - cation and enzymatic digestibility. Indian journal of microbiology,vol. 52, no. 2, 122-130, DOI: 10.1007/ s12088-011-0199x.

41. Kinney, T., Masiello, C., Dugan, B., Hockaday, W., Dean, M., Zygourakis, K., Barnes, R. (2012). Hydrologic properties of biochars produced at different temperatures. Biomass and Bioenergy,vol. 41, 34- 43, DOI: 10.1016/j.biombioe.2012.01.033.

42. Thaiyibah, N., Alimuddin, A., Panggabean, A.S. (2016). Pembuatan dan karakterisasi membran selulosa asetat-pvc dari eceng gondok (Eichhornia crassipes) untuk adsorpsi logam tembaga (II). Jurnal Kimia Mulawarman, vol. 14, no. 1, 29-35.

43. Zhang, F., Zhu, Z., Wang, B., Wang, P., Yu, G., Wu, M., Chen, W., Ran, W., Shen, Q. (2013). Optimization of Trichoderma harzianum T-E5 biomass and determining the degradation sequence of biopolymers by FTIR in solid-state fermentation. Industrial Crops and Products,vol. 49, 619-627, DOI: 10.106/j. indcrop.2013.05.037.

44. Nishiyama, S., Okazaki, M., Katsumi, N., Honda, Y., Tsujimoto, M. (2015). Surface charge on sago starch granules. Sago Palm,vol. 23, 77-83.

45. Sembiring, M.T., Sinaga, T.S. (2003). Arang Aktif (Pengenalan dan Proses Pembuatannya), 1-9.

46. Xiao, X., Bian, J., Li, M.-F., Xu, H., Xiao, B., Sun, R.C. (2014). Enhanced enzymatic hydrolysis of bamboo (Dendrocalamus giganteus Munro) culm by hydrothermal pretreatment. Bioresource Technology,vol. 159, 41-47, DOI: 10.1016/j.biortech.2014. 02.096.

47. Rambat, R., Aprilita, N.H., Rusdiarso, B. (2015). Aplikasi limbah kulit buah kakao sebagai media fermentasi asam laktat untuk bahan baku bioplastik. Jurnal Kimia dan Kemasan,vol. 37, no. 2, 111-122, DOI: 10.24817/jkk.v37i2.1820.

48. Dewi, A.M.P., Kusumaningrum, M.Y., Edowai, D.N., Pranoto, Y., Darmadji, P. (2017). Ekstraksi dan karakterisasi Selulosa dari limbah ampas sagu. Prosiding SNST Fakultas Teknik,vol. 1, no. 1, 6-9.

49. Xu, G., Wang, L., Liu, J., Wu, J. (2013). FTIR and XPS analysis of the changes in bamboo chemical structure decayed by white-rot and brown-rot fungi. Applied Surface Science,vol. 280, 799-805, DOI: 10.1016/j.apsusc.2013.05.065.

50. Fang, C., Schmidt, J.E., Cybulska, I., Brudecki, G.P., Frankaer, C.G., Thomsen, M.H. (2015). Hydrothermal pretreatment of date palm (Phoenix dactylifera L.) leaflets and rachis to enhance enzymatic digestibility and bioethanol potential. BioMed Research International, vol. 2015, 1-13, DOI: 10.1155/2015/216454.

51. Rahmidar, L., Wahidiniawati, S., Sudiarti, T. (2018). Pembuatan dan karakterisasi metil selulosa dari bonggol dankulit nanas (Ananas comosus). Alotrop,vol. 2, no. 1, 88-96.

52. Nomanbhay, S.M., Hussain, R., Palanisamy, K. (2013). Microwave-assisted alkaline pretreatment and microwave assisted enzymatic saccharifi cation of oil palm empty fruit bunch fi ber for enhanced fermentable sugar yield. Journal of Sustainable Bioenergy Systems, vol. 3, no. 1, 7-17, DOI: 10.4236/ jsbs.2013.31002.

53. Santoso, B., Sakakura, K., Naito, H., Ohmi, M., Nishimura, Y., Uchiyama, T., Itaya, A., Hisamatsu, M., Ehara, H., Mishima, T. (2015). Effects of micro powder milling on physicochemical properties of sago starch. Journal of Applied Glycoscience, vol. 62, no. 2, 73-80, DOI: 10.5458/jag.jag.JAG-2015_008.

54. Hidayat, M.R. (2013). Bahan lignoselulosa dalam proses produksi bioetanol. Biopropal Industri,vol. 4, 33-48.