Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science

BIOMETRIC SYSTEMS BASED ON ECG USing ENSEMBLE EMPIRICAL MODE DECOMPOSITION AND VARIATIONAL MODE DECOMPOSITION


DOI: 10.5937/jaes18-26041
This is an open access article distributed under the CC BY-NC-ND 4.0 terms and conditions. 
Creative Commons License

Sugondo Hadiyoso*
Telkom University,Bandung, Indonesia

Inung Wijayanto
Telkom University,Bandung, Indonesia

Achmad Rizal
Telkom University,Bandung, Indonesia

Suci Aulia
Telkom University,Bandung, Indonesia

Electrocardiogram (ECG) based biometric is challenging to be developed with the aim of high-security access. This biometric system is more difficult to falsify, compared to the conventional biometric systems. From previous proposed studies, there is still a gap to improve the accuracy of the system. Therefore in this study, a new protocol is proposed to improve the performance of the ECG biometric system compared to previously reported studies. This study decomposes the ECG signals using a method based on empirical mode decomposition (EMD) based, which are Variational Mode Decomposition (VMD) and Ensemble Empirical Mode Decomposition (EEMD). These two methods are the development of the EMD method to overcome one main problem of EMD. That is, the EMD method generates oscillations with the same time scales, which stored in different decomposition levels. A private ECG dataset, recorded using one lead ECG signal from 11 subjects, is used in this study. ECG signals from each person are then segmented into ten windows to become training data and test data. VMD and EEMD methods are used to decompose ECG signals into five sub-signals. Feature extraction based on statistical calculations is applied at each level of decomposition to obtain the characteristics of the ECG signal. Mean, variance, skewness, kurtosis, and entropy are evaluated as predictors. Support vector machines and 10-fold cross-validation are used to validate the performance of the proposed method. Our simulations demonstrate that the proposed method outperforms several previous studies and achieves an accuracy of up to 98.2%.

View article

1. Fratini, A., Sansone, M., Bifulco, P., & Cesarelli, M. (2015). Individual identification via electrocardiogram analysis. BioMedical Engineering Online, 14(1), 1–23. https://doi.org/10.1186/s12938-015-0072-y

2. Nemirko A. P., Lugovaya T. S. (2005). Biometric human identification based on electrocardiogram. In Proc. XII-th Russian Conference on Mathematical Methods of Pattern Recognition (pp. 387–390). https://doi.org/10.1007/978-1-4614-7990-1

3. Biel, L., Pettersson, O., Philipson, L., & Wide, P. (2001). ECG analysis: A new approach in human identification. IEEE Transactions on Instrumentation and Measurement, 50(3), 808–812. https://doi.org/10.1109/19.930458

4. Krasteva, V., Jekova, I., & Schmid, R. (2018). Perspectives of human verification via binary QRS template matching of single-lead and 12- lead electrocardiogram. PLoS ONE, 13(5), 1–25. https://doi.org/10.1371/journal.pone.0197240

5. Jekova, I., & Bortolan, G. (2015). Personal Verifi cation/ Identifi cation via Analysis of the Peripheral ECG Leads: Infl uence of the Personal Health Status on the Accuracy. BioMed Research International, 2015, 1–13. https://doi.org/10.1155/2015/135676

6. Belgacem, N., Nait-Ali, A., Fournier, R., & Bereksi-Reguig, F. (2012). ECG Based Human Authentication using Wavelets and Random Forests. International Journal on Cryptography and Information Security, 2(2), 1–11. https://doi.org/10.5121/ijcis.2012.2201

7. Wei-quan, W., Pan, L. U., Jia-lun, L. I. N., & Jin, Z. (2016). ECG Identification Based on Wavelet Transform. In Joint International Information Technology, Mechanical and Electronic Engineering Conference (JIMEC 2016) (pp. 497–501).

8. Pal, A., & Singh, Y. N. (2019). Biometric recognition using area under curve analysis of electrocardiogram. International Journal of Advanced Computer Science and Applications, 10(1), 533–545. https://doi.org/10.14569/IJACSA.2019.0100169

9. Carreiras, C., Lourenco, A., Silva, H., & Fred, A. (2013). A unifying approach to ECG biometric recognition using the wavelet transform. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7950 LNCS, 53–62. https://doi.org/10.1007/978-3-642-39094-4_7

10. Dar, M. N., Akram, M. U., Shaukat, A., & Khan, M. A. (2015). ECG based biometric identification for population with normal and cardiac anomalies using hybrid HRV and DWT features. 2015 5th International Conference on IT Convergence and Security, ICITCS 2015 - Proceedings. https://doi.org/10.1109/ ICITCS.2015.7292977

11. Chin, C. Y., Ramli, D. A., Chin, C. Y., Engineering, S. of E. and E., Campus, U. E., Malaysia, U. S., Malaysia. (2018). Development of Heartbeat Based Biometric System Using Wavelet Transform. Journal of Engineering Science, 14, 15–33. Retrieved from http://web.usm.my/jes/14_2018/JES_14_2018_2. pdf

12. Belgacem, N., Fournier, R., Nait-Ali, A., & Bereksi-Reguig, F. (2015). A novel biometric authentication approach using ECG and EMG signals. Journal of Medical Engineering and Technology, 39(4), 226–238. https://doi.org/10.3109/03091902.2015.1021429

13. Belgacem, N., Amine Nait, A., & Fethi, R. (2012). Person Identification System Based on Electrocardiogram Signal Using Lab VIEW. International Journal on Computer Science and Engineering, 4(06), 974–981.

14. Wang, D., Si, Y., Yang, W., Zhang, G., & Li, J. (2019). A novel electrocardiogram biometric identification method based on temporal-frequency autoencoding. Electronics (Switzerland), 8(6), 1–24. https://doi. org/10.3390/electronics8060667

15. Odinaka, I., Lai, P. H., Kaplan, A. D., O’Sullivan, J. A., Sirevaag, E. J., Kristjansson, S. D., … Rohrbaugh, J. W. (2010). ECG biometrics: A robust short-time frequency analysis. 2010 IEEE International Workshop on Information Forensics and Security, WIFS 2010. https://doi.org/10.1109/WIFS.2010.5711466

16. Arteaga-Falconi, J. S., Al Osman, H., & El Saddik, A. (2016). ECG Authentication for Mobile Devices. IEEE Transactions on Instrumentation and Measurement, 65(3), 591–600. https://doi.org/10.1109/TIM.2015.2503863

17. Donida Labati, R., Munoz, E., Piuri, V., Sassi, R., & Scotti, F. (2019). Deep-ECG: Convolutional Neural Networks for ECG biometric recognition. Pattern Recognition Letters, 126, 78–85. https://doi.org/10.1016/j.patrec.2018.03.028

18. Hadiyoso, S., Aulia, S., & Rizal, A. (2019). One- Lead Electrocardiogram for Biometric Authentication using Time Series Analysis and Support Vector Machine. International Journal of Advanced Computer Science and Applications, 10(2), 276–283. https://doi.org/10.14569/IJACSA.2019.0100237

19. Hadiyoso, S., Rizal, A., & Wijayanto, I. (2019). ECG based biometric using wavelet packet decomposition. International Journal of Engineering and Advanced Technology, 9(1), 2178–2183.

20. Hadiyoso, S., Rizal, A., & Aulia, S. (2019). ECG Based Person Authentication using Empirical Mode Decomposition and Discriminant Analysis. Journal of Physics: Conference Series, 1367, 1–10. https://doi.org/10.35940/ijeat.A9699.109119

21. Sigit, R., Hadiyoso, S., Rizal, A., & Usman, K. (2014). Mini Wireless ECG for Monitoring Athletes’ ECG Signal Based on Smartphone. IOSR Journal of Engineering, 4(6), 13–18. https://doi.org/10.9790/3021-04611318

22. Kwon, O., Jeong, J., & Kim, H. Bin. (2018). ECG Sampling Frequency for HRV Analysis. Healthcare Informatics Research, 24(3), 198–206. https://doi.org/10.4258/hir.2018.24.3.198

23. Parak, J., & Havlik, J. (2011). ECG signal processing and heart rate frequency detection methods. Proceedings of Technical Computing Prague, (January). Retrieved from http://amber2.feld.cvut.cz/bmeg/ wp-content/uploads/2012/03/Parak-TCP-2011.pdf

24. Lin, H., & Chen, H. [2018]. Automated visual fault inspection of optical elements using machine vision technologies. Journal of Applied Engineering Science, 16(4), 447-453.

25. Yol, S., Ozdemir, M. A., Akan, A., & Chaparro, L. F. (2018). Detection of Epileptic Seizures by the Analysis of EEG Signals Using Empirical Mode Decomposition. 2018 Medical Technologies National Congress, TIPTEKNO 2018, 1–4. https://doi.org/10.1109/TIPTEKNO.2018.8596780

26. Salmanvandi, M., & Einalou, Z. (2017). Separation of twin fetal ECG from maternal ECG using empirical mode decomposition techniques. Biomedical Engineering - Applications, Basis and Communications, 29(6), 1–12. https://doi.org/10.4015/ S1016237217500429

27. Liu, G., & Luan, Y. (2015). An adaptive integrated algorithm for noninvasive fetal ECG separation and noise reduction based on ICA-EEMD-WS. Medical and Biological Engineering and Computing, 53(11), 1113–1127. https://doi.org/10.1007/s11517- 015-1389-1

28. Wu, Z., & Huang, N. E. (2009). Ensemble Empirical Mode Decomposition: a Noise-Assisted Data Analysis Method. Advances in Adaptive Data Analysis, 01(01), 1–41. https://doi.org/10.1142/ s1793536909000047

29. Dragomiretskiy, K., & Zosso, D. (2014). Variational mode decomposition. IEEE Transactions on Signal Processing, 62(3), 531–544. https://doi.org/10.1109/ TSP.2013.2288675

30. Ye, H., Zhu, J., Cheng, Y., Xue, D., Wang, B., & Peng, Y. (2018). PPG based Respiration Signal Estimation using VMD-PCA. In 2018 24th International Conference on Automation and Computing (ICAC)(pp. 1–5). https://doi.org/10.23919/iconac.2018.8748954

31. C. Cortes, & Vapnik, V. (1995). Support Vector Networks. Machine Learning, 20(3), 273~-~297. https://doi.org/10.1007/BF00994018

32. Victorovich, B. V., Sergeevich, T. V., Arkadievich, P. E., & Anatolyevich, B. F. [2019]. Development of models for recognition of technological situations in the operation of electric centrifugal pumps for oil production. Journal of Applied Engineering Science, 17(4), 541-549

33. Jain, S., & Salau, A. O. (2019). An image feature selection approach for dimensionality reduction based on kNN and SVM for AkT proteins. Cogent Engineering, 6(1), 1–14. https://doi.org/10.1080/23311916.20 19.1599537

34. Jain, S., & Salau, A. O. (2019b). Detection of glaucoma using two dimensional tensor empirical wavelet transform. SN Applied Sciences, 1(11). https://doi.org/10.1007/s42452-019-1467-3

35. Smisek, R., Hejc, J., Ronzhina, M., Nemcova, A., Marsanova, L., Chmelik, J., Vitek, M. (2017). SVM Based ECG Classification Using Rhythm and Morphology Features, Cluster Analysis and Multilevel Noise Estimation, 44, 1–4. https://doi.org/10.22489/ CinC.2017.172-200

36. Smisek, R. (2016). ECG Signal Classifi cation Based on SVM. Biomedical Engineering, (1), 365–369.

37. Wijayanto, I., Rizal, A., & Hadiyoso, S. (2018). Multilevel Wavelet Packet Entropy and Support Vector Machine for Epileptic EEG Classification. In 2018 4th International Conference on Science and Technology (ICST) (pp. 9–14). Yogyakarta.

38. Wijayanto, I., Hartanto, R., & Nugroho, H. A. (2020). Comparison of empirical mode decomposition and coarse-grained procedure for detecting pre-ictal and ictal condition in electroencephalography signal. Informatics in Medicine Unlocked, 19, 100325.https:// doi.org/10.1016/j.imu.2020.100325

39. Mitha, M., Shiju, S. S., & Viswanadhan, M. (2014). Automated epileptic seizure detection using relevant features in support vector machines. 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies, ICCICCT 2014, 1000–1004. https://doi.org/10.1109/ ICCICCT.2014.6993105

40. Boser, E., Vapnik, N., Guyon, I. M., & Laboratories, T. B. (1992). Training Algorithm Margin for Optimal Classifi ers. Perception, 144–152

41. Rizal, A., Hidayat, R., & Nugroho, H. A. (2017). Lung Sound Classifi cation Using Empirical Mode Decomposition and the Hjorth Descriptor. American Journal of Applied Sciences, 14(1), 166–173. https://doi. org/10.3844/ajassp.2017.166.173

42. Maji, U., & Pal, S. (2016). Empirical mode decomposition vs. variational mode decomposition on ECG signal processing: A comparative study. In 2016 International Conference on Advances in Computing, Communications and Informatics, ICACCI 2016 (pp.1129–1134). https://doi.org/10.1109/ICACCI. 2016.7732196