Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science


DOI: 10.5937/jaes18-25786 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 18 article 693 pages: 305 - 312

Andrej Olejnik*
Moscow State Technological University “Stankin“, Institute of Information Systems and Technologies, Department of Management and Informatics in Technical Systems Moscow, Russian Federation

Alexey Kapitanov
Moscow State Technological University “Stankin“, Department of Automated Information Processing and Control Systems, Moscow, Russia

Islam Alexandrov
Institute of Design-Technology Informatics of the Russian Academy of Sciences, Moscow, Russian Federation

Aslan Tatarkanov
Institute of Design-Technology Informatics of the Russian Academy of Sciences, Moscow, Russian Federation

Regulating the deformed metal's fl ow is an important condition for the knurling process. To achieve this, the knurling tool should have a special intake part, where all the main work of plastic deformation would be realized. Depending on the confi guration, the fi ns can be knurled in two ways: either by a radial feed of the tool or an axial feed of a billet (package of billets) or a tool. Using the radial feed method, most types of piece gear parts can be knurled using a more rational radial fl ow of the deformed metal. However, this process is usually characterized by low productivity. The axial knurling method is signifi cantly more productive. In this case, due to the undesirable axial fl ow of the deformed metal, it fl ows to the ends of the billets. As a result, it becomes necessary to introduce additional machining operations and metal waste increases. The article provides an analysis of existing methods of forming fi ns on a cylindrical surface. The authors analyze the advantages and disadvantages of applying the methods in modern conditions, select the most appropriate method, and substantiate the principles of developing tools for cold knurling of fi ns. The purpose of the work was to develop a tool for determining the forces acting in the cold knurling process and study their infl uence on the characteristics of the fi nal products.

View article

Some results of this manuscript were obtained as part of the work under the Agreement on the provision of subsidies from 13 December 2019 No. 75-15-2019-1941 (agreement internal number 05.607.21.0321) on the topic: "Development of design and technological solutions for modular pre-fabricated transmission line towers with integrated systems for continuous digital monitoring of the condition and thermal stabilization of soil to meet the needs of the Arctic regions and the Far North" with the Ministry of Science and Higher Education of the Russian Federation. The unique identifi er of the applied research (project) is RFMEFI60719X0321.

1. Hakansson, H. (2015). Industrial Technological Development. Routledge Revivals, London. doi:10.4324/9781315724935.

2. Hitomi, K. (2017). Manufacturing Systems Engineering. Routledge, London. doi:10.1201/9780203748145.

3. Zheng, D. (2015). Industrial Engineering and Manufacturing Technology. Proceedings of the 2014 International Conference on Industrial Engineering and Manufacturing Technology (ICIEMT 2014), July 10- 11, 2014, Shanghai, China. doi:10.1201/b18144.

4. Kopp, R. (1996). Some current development trends in metal-forming technology. Journal of Materials Processing Technology, 60(1-4), 1–9. doi: 10.1016/0924-0136(96)02301-1.

5. Semenov, A.B., Muranov, A.N., Kutsbakh, A.A., Semenov, B.I. (2017). Injection molding of structured multiphase materials. RUDN Journal of Engineering Researches, 18(4), 407–425. doi: 10.22363/2312- 8143-2017-18-4-407-425.

6. Wais, P. (2012). Fin-Tube Heat Exchanger Optimization. Heat Exchangers - Basics Design Applications. InTech, Rijeka. doi:10.5772/33492.

7. Salunke, K.A., Lambhate, V., Jadhav, U., Kumbhar, S. (2016). Optimization of Pipe Finning Process with Engineering Principles. International Journal of Science and Research (IJSR), 5(3), 270–272. doi: 10.21275/v5i3.nov161849.

8. Kocurek, R., Adamiec, J. (2013). Manufacturing Technologies of Finned Tubes. Advances in Materials Sciences, 13(3). doi: 10.2478/adms-2013-0009.

9. Huang, H., Ji, C., Yang, Z., Yan, M. (2017). Implementation and forming mechanism of the solid-liquid cast-rolling bonding (SLCRB) process for steel/ Al clad pipes. Journal of Manufacturing Processes, 30, 343-352.

10. Huang, H. (2017). Research on Cast-rolling Force Calculation Model in Solid-liquid Cast-rolling Bonding (SLCRB) Process of Bimetallic Clad Pipe. Journal of Mechanical Engineering, 53(10), 10. doi: 10.3901/jme.2017.10.010.

11. Semenov, A.B., Kutsbakh, A.A., Muranov, A.N., Semenov, B.I. (2019). Metallurgy of thixotropic materials: the experience of organizing the processing of structural materials in engineering Thixo and MIM methods. IOP Conference Series: Materials Science and Engineering, vol. 683, 012056. doi:10.1088/1757-899x/683/1/012056.

12. Saha, S.K., Ranjan, H., Emani, M.S., Bharti, A.K. (2019). Internally Finned Tubes and Spirally Fluted Tubes. SpringerBriefs in Applied Sciences and Technology, 85–126. doi: 10.1007/978-3-030-20748-9_6.

13. Naphon P. (2007). Thermal performance and pressure drop of the helical-coil heat exchangers with and without helically crimped fi ns. International Communications in Heat and Mass Transfer, 34(3), 321– 330. doi: 10.1016/j.icheatmasstransfer.2006.11.009.

14. Fan, L., Gao, Y., Li, Q., Xu, H. (2012). Quality control on crimping of large diameter welding pipe. Chinese Journal of Mechanical Engineering, 25(6), 1264– 1273. doi: 10.3901/cjme.2012.06.1264.

15. Merkulov, D.V. (2008). Pipe rolling in helical-rolling mills without a guide system. Steel in Translation, 38(7), 580–584. doi: 10.3103/s096709120807022x.

16. Vydrin, A.V., Shirokov, V.V. (2011). Speed simulation of continuous pipe rolling. Steel in Translation, 41(2), 140–142. doi: 10.3103/s0967091211020215.

17. Sawicki, S., Dyja, H. (2012). Theoretical and Experimental Analysis of the Bimetallic Ribbed Bars Steel - Steel Resistant to Corrosion Rolling Process. Archives of Metallurgy and Materials, 57(1). doi: 10.2478/v10172-011-0153-2.

18. Sadeghi, M. (2017). High frequency resistance welded fi nned tubes technologies in heat recovery steam generator boilers. Journal of Environmental Friendly Materials, 1(1), 46-57.

19. Wang, S., Cheng, S., Yu, H., Rao, Z., Liu, Z. (2013). Experimental investigation of Al–Cu composed tube–fi n heat exchangers for air conditioner. Experimental Thermal and Fluid Science, 51, 264–270. doi: 10.1016/j.expthermfl usci.2013.08.007.

20. Carija, Z., Frankovic, B., Percic, M., Cavrak, M. (2014). Heat transfer analysis of fi n-and-tube heat exchangers with fl at and louvered fi n geometries. International Journal of Refrigeration, vol. 45, 160– 167. doi:10.1016/j.ijrefrig.2014.05.026.

21. Galushchak, I. (2017). Experimental investigation of heat transfer in interfi n channels of punched spiral tube fi nning. Technology Transfer: Fundamental Principles and Innovative Technical Solutions, 12– 14. doi: 10.21303/2585-6847.2017.00473.

22. Filippov, E.B., Cherepennikov, G.B., Leshchenko, T.G. (2010). A numerical study of the thermal effi ciency of a tubular heating surface with split spiral-tape fi nning. Thermal Engineering, 57(7), 598–602. doi: 10.1134/s0040601510070116. Andrej Olejnik, et al. - Designing a tool for cold knurling of fi ns 311 

23. Kuzma-Kichta, Y.A., Savel’ev, P.A., Koryakin, S.A., Dobrovol’skii, A.K. (2007). Studying of heat-transfer enhancement in tubes with screw knurling. Thermal Engineering, 54(5), 407–409. doi: 10.1134/ s0040601507050138.

24. Paquet, A. (1993). Comparison of Brazing Processes for Aluminum Heat Exchanger Manufacturing. SAE Technical Paper Series. doi: 10.4271/931093.

25. Jiang, Z.Y. (2011). Mechanics of cold rolling of thin strip. Numerical analysis–Theory and application, IntechOpen, Rijeka, 439-462. doi:10.5772/23344.

26. Afanasyev, A.E., Kargin, V.R., Kargin, B.V. (2016). Force conditions for light-alloy spiral-fi nned drill pipe extrusion. Izvestiya Vuzov Tsvetnaya Metallurgiya (Proceedings of Higher Schools Nonferrous Metallurgy), (2), 58–63. doi: 10.17073/0021-3438-2016-2- 58-63.

27. Wagner, J.R., Mount, E.M., Giles, H.F. (2014). Pipe and Tubing Extrusion. Extrusion, 573–583. doi: 10.1016/b978-1-4377-3481-2.00050-8.

28. Wang, F., Liang, C., Yang, M., Fan, C., Zhang, X. (2015). Effects of surface characteristic on frosting and defrosting behaviors of fi n-tube heat exchangers. Applied Thermal Engineering, vol. 75, 1126– 1132. doi:10.1016/j.applthermaleng.2014.10.090.

29. Kim, K., Lee, K.-S. (2013). Frosting and defrosting characteristics of surface-treated louvered-fi n heat exchangers: Effects of fi n pitch and experimental conditions. International Journal of Heat and Mass Transfer, vol. 60, 505–511. doi:10.1016/j.ijheatmasstransfer. 2013.01.036.

30. Sakai, T., Belyakov, A., Kaibyshev, R., Miura, H. (2014). Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Progress in Materials Science, 60, 130–207. doi: 10.1016/j.pmatsci.2013.09.002.

31. Bower, A.F., Johnson, K.L. (1989). The infl uence of strain hardening on cumulative plastic deformation in rolling and sliding line contact. Journal of the Mechanics and Physics of Solids, 37(4), 471–493. doi:10.1016/0022-5096(89)90025-2.

32. McDowell, D.L., Moyar, G.J. (1990). Effects of non-linear kinematic hardening on plastic deformation and residual stresses in rolling line contact. Mechanics and Fatigue in Wheel/Rail Contact, 19–37. doi:10.1016/b978-0-444-88774-0.50006-7.

33. Yoshimi, T., Matsumoto, S., Tozaki, Y., Yoshida, T., Sonobe, H., Nishide, T. (2009). Work Hardening and Change in Contact Condition of Rolling Contact Surface with Plastic Deformation. Tribology Online, vol. 4, no. 1, 1–5. doi:10.2474/trol.4.1.

34. Johnson, K.L. (2000). Plastic Deformation in Rolling Contact. Rolling Contact Phenomena, 163–201. doi:10.1007/978-3-7091-2782-7_3.

35. Liu, B., Tang, C.L., Gu, T.Q. (2014). A Method to Avoid Strip Breakage for Thin Strip Steel in Cold Rolling. Advanced Materials Research, 1004- 1005, 1211–1215. doi: 10.4028/www.scientifi amr.1004-1005.1211.

36. Jiang, Z.Y., Du, X.Z., Du, Y.B., Wei, D.B., Hay, M. (2010). Strip Shape Analysis of Asymmetrical Cold Rolling of Thin Strip. Advanced Materials Research, 97-101, 81–84. doi: 10.4028/www.scientifi amr.97-101.81.

37. Aljabri, A., Jiang, Z.Y., Wei, D.B. (2014). Analysis of Thin Strip Profi le during Asymmetrical Cold Rolling with Roll Crossing and Shifting Mill. Advanced Materials Research, 894, 212–216. doi: 10.4028/www. scientifi

38. Zhang, P., Kou, S., Lin, B., Wang, Y. (2014). Optimization for radial knurling connection process of assembled camshaft using response surface method. The International Journal of Advanced Manufacturing Technology, 77(1-4), 653–661. doi: 10.1007/s00170-014-6486-z.

39. Feng, C.-X.J., Wang, X.-F. (2004). Data mining techniques applied to predictive modeling of the knurling process. IIE Transactions, 36(3), 253–263. doi: 10.1080/07408170490274214.

40. Song, M., Liu, X.H., Tang, D.L. (2014). Texture Evolution of Commercially Pure Copper during Ultra-Thin Strip Rolling. Advanced Materials Research, 941-944, 1532–1536. doi: 10.4028/www.scientifi