Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science


DOI: 10.5937/jaes0-27726 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 19 article 758 pages: 17 - 23

Slamet Wahyudi*
Brawijaya University, Faculty of Engineering, Department of Mechanical Engineering, Malang, Indonesia

Firman Nurahmad Efendi
Brawijaya University, Faculty of Engineering, Department of Mechanical Engineering, Malang, Indonesia

Ahmat Faizal
Brawijaya University, Faculty of Engineering, Department of Mechanical Engineering, Malang, Indonesia

Biogas is produced by the digestion of organic waste by anaerobic bacteria. However, the application of raw biogas is not effective because it consists of impurities such as carbon dioxide (CO2), hydrogen sulfide (H2S), water vapor (H2O), and other impurity gases. Physical Adsorption is the simplest method of immobilization of biomolecules such as CO2 which is attached to the surface through the weak bonds like van der Waals forces. One of the physical adsorption means to reduce CO2 levels in biogas is to use brick powder. Increasing of brick powder adsorbent mass caused the decrease of CO2 concentration in the biogas purification. Brick is a porous material containing SiO2 – Al2O3, so it has the ability to form Van Der Waals bonding forces with CO2. The goal of this research is to determine the efficiency of brick powder as a purification adsorbent to reduce of CO2 levels using the 23 factorial design method. The application of 200 and 400 grams brick powder adsorbents, with the biogas flow rate of 1 and 2 liters/minute, was researched at intervals of 5 and 20 minutes, for the CO2 concentration data and heating values of biogas. Gas Chromatography (GC) was used to determine the concentration of adsorption gases, especially CO2 and CH4. The results showed that the biggest efficiency reduction in CO2 concentration is 59.28 %.

View article

This research was funded by Faculty of Engineering, Brawijaya University, Malang, Indonesia with a contract agreement number: 19/UN10.F07/PN/2020

1. Aleman-Nava, G.S., Casiano, V.H., Cardenas-Chavez, D.L., Diaz-Chavez, R., Scarlat, N and Mahlknecht, J.(2014). Renewable Energy Research Progress in Mexico: A Review. Renewable and Sustainable Energy Reviews, vol.32,140-153,doi. org/10.1016/j.rser.2014.01.004

2. Hossain, M.S and Rahman, M.F.(2020). Hybrid Solar PV/Biomass Powered Energy Effecient Remote Cellular Base Stations. International Journal of Renewable Energy Research, vol. 10, no.1, 329-342

3. Garlucci, I., Mutani, G and Martino, M.(2015). Assessment of Potential Energy Producible form Agricultural Biomass in Municipalities of the Novara Plain. 2015 International Conference on Renew¬able Energy Research and Applications (ICRE¬RA),p.22-25, DOI:10.1109/ICRERA.2015.7418636

4. Ulusoy, Y and Ulukardesler, A. H.(2017). Biogas Production Potentialof Olive-mill Wastes in Turkey. 2017 IEEE 6th International Conference on Renewable Energy Research and Applications,p.5-8, DOI:10.1109/ICRERA.2017.8191143

5. Maile, O.I., Muzenda, E and Tesfagiorgis, H.(2017). Chemical Absorption of Cabon Dioxide in Biogas Pu-rification. International Conference on Sustainable Materials Processing and Manufacturing, SMPM 2017,p.639-646,

6. Yentekakis, I.V and Goula, G.(2017). Biogas Management: Advanced Utilization for Production of Renewable Energy and Added-value Chemicals. Frontiers in Environmental Science vol.5 (article7), DOI:10.3389/fenvs.2017.00007

7. Maile, O. I., Tesfagiorgis, H and Muzenda, E.(2017). Possible Absorbent Regeneration in Biogas Purification and Upgrading : A Review. The Nexus: Energy. Environment and Climate Change, 273-287, DOI/10.1007/978-3-319-63612-2_17

8. Gerlach, F., Grieb, B and Zerger, U.(2013). Sustain¬able Biogas Production: A Handbook for Organic Farmers. FiBL Projekte GmbH, Germany

9. Thiyam, P., Persson, C., Parsons, D.F., Huang, D., Buhmann, S.Y and Bostrom,M.(2015). Trends Of CO2 adsorption on celuluose due to can der Waals, Forces. Colloids and Surfaces A Phyisicochemical and Engineering Aspects, vol.470, no.1, 316-321, DOI:10.1016/j/consurfa.2014.12.044

10. Gawande, S.M., Belwalkar, N.S and Mane, A.A.(2017). Adsorption and its Isotherm – Theory. International Journal of Engineering Research, vol.6, no.6,312-316, DOI;10.5958/2319- 6890.2017.00026.5

11. Ikegwu, J. U and Uzuegbu, J.(2015). X-ray Fluorescence Investigation of Clay Minerals for Pottery Making in Abakiliki Formation, Nigeria. Nyame Aku¬ma, no.84,1-11

12. Rahman, N.A., Widiyastuti, W., Ajiza, M and Laksmana, D.(2020). Application of Amine Modified Silica Adsorbenes on CO2 Adsorption in Biogas. Proceedings of the 2nd International Conference on Quran and Hadith Studies Information Technology and Media in Conjuction with the 1st International Conference on Islam, Science and Technology, ICONQUHAS & ICONIST (2018), Bandung, Indonesia, DOI:10.4108/eai.2-10-2018.2295556

13. Auta, M and Hameed, B.H.(2012). Modified Mesoporous Clay Adsorbent For Adsorption Isotherm And Kinetics Of Methylene Blue. Chemical Engineering Journal, vol.198–199, 219-227, DOI/10.1016/j. cej.2012.05.075

14. Chouikhi, N., Cecilia, J.A., Vilarrasa-Garcia, E., Besghaier, S., Chlendi, M., Duro, F.I.F., Castellon, E.R and Bagane, M.(2019). CO2 Adsorption of Materials Synthesized from Clay Minerals: A Review. Minerals, vol.9, no.514, 1-22, DOI:10.3390/min9090514

15. Lhanafi, S., Anfar, Z., Chebli, B., Benafqir, M., El-Haouti, R., Azougarh, Y., Abbaz, M and El-Alem, N.(2018). Factorial Experimental Design to Enhance Methane Production of Dairy Wastes Co-Digestion. Sustainable Environment Research, vol.28, no.6, 289-395, DOI: 10.1016/j.serj.2018.05.001

16. Rashid, M., Shakib, N and Rahman, T.(2019). Bio¬gas Production from POME by Optimum Level of Inputs. Smart Grid and Renewable Energy, vol.10, no.8, 203-212, DOI : 10.4236/sgre.2019.108013

17. Wuri, M.A., Pertiwiningrum, A., Budiarto, R and Koranto, C.A.D.(2018). Characterization of Natural Zeolite and Chicken Manure Derived Biochar for Carbon Dioxide Adsorption in Biogas. E3S Web of Conferences, Astechnova2017, vol.43, no.4,1-4, DOI : 10.1051/e3sconf/20184301008

18. Benefield, L.D.(1982). Process Chemistry For Water And Wastewater Treatment. Prentice Hall Inc., Engelwoods Cliffs, New York

19. Mrosso, R., Machunda, R and Pogrebnaya, T.(2020). Removal of Hydrogen Sulfide from Biogas Using Red Rock. Hindawi Journal of Energy,vol.2020,1-10 ,DOI:10.1155/2020/2309378

20. O.I. Maile, O.I., Tesfagiorgis, H and Muzenda, E.(2017). The potency of monoethanolamine in biogaspurification and upgrading. South African Journal of Chemical Engineering, vol.24,122-127, DOI:10.1016/j.sajce.2017.06.004

21. Lety, T., Dina, E.K., Tahdid, T., Ridwan, K.A., Alfarizi, M.N and Mangihut, P.L.(2020). The Effect of flowrate and NaOH Concentration to CO2 Reduction in Bio¬gas Products Using Absorber. IOP Journal Physic: Conferencies Series, vo.1500, DOI:10.1088/1742- 6596/1500/1/012054

22. Ghatak, M.D and Mahanta, P.(2016). Biogas Purification using Chemical Absorption. International Journal of Engineering and Technology, vol. 8, no. 3, 1600-1605,

23. Mitzlaff, K.V.(1988). Engines for Biogas. A Publication of the Deutsches Zentrum für Entwicklungstechnologien GATE, a division of the 1988 Deutsche Gesellschaft fur Technische Zusammenarbeit (GTZ) GmbH

24. Adnan, A.I., Ong, M.Y., Nomanbhay, S., Chew, K.W and Show, P.L.(2019). Technologies for Biogas Upgrading to Biomethane: A Review. Bioengineer¬ing, vol.6, no.92, 1-23, DOI:10.3390/bioengineer¬ing6040092

25. Saleh, A., Melwita, E., Prastyowati., Manulu, L.F and Christian, Y.(2014). Increasing Percentage of Methane (CH4) from Biogas with Purification by Using Zeolite Membrane. Proceedings of The 5th Sriwijaya International Seminar on Energy and Environmental Science & Technology, Palembang Indonesia 2014, p.97-101

26. Walozi, R., Nabuuma, B and Sebiti, A.(2016). Application of Low Pressure Water Scrubbing Technique for Increasing Methane Content in Biogas. Universal Journal of Agricultural Research, vol. 4, no.2, 60-65, DOI:10.13189/ujar.2016.040206

27. Tufaner, F and Avsar, Y.(2016). Effects Of Co-Substrate On Biogas Production From Cattle Manure: A Review. International Journal Environmental Science and Technology, vol.13, no.9, 2303–2312, DOI:10.1007/s13762-016-1069-1