Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science


DOI: 10.5937/jaes0-27589 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 19 article 777 pages: 162 - 171

Erman Taer*
Universitas Riau, Faculty of Mathematic and Natural Science, Department of Physics, Pekanbaru, Indonesia

Miftah Ainul Mardiah
Universitas Riau, Faculty of Mathematic and Natural Science, Department of Physics, Pekanbaru, Indonesia

Universitas Riau, Faculty of Mathematic and Natural Science, Department of Physics, Pekanbaru, Indonesia

Widya Sinta Mustika
Universitas Riau, Faculty of Mathematic and Natural Science, Department of Physics, Pekanbaru, Indonesia

Universitas Riau, Faculty of Mathematic and Natural Science, Department of Physics, Pekanbaru, Indonesia

Rika Taslim
Islamic State University of Sultan Syarif Kasim, Faculty of Science and Technology, Departement of Industrial Engineering, Pekanbaru, Indonesia

Mesoporous carbon materials derived from the novel biomass of fallen teak leaves were synthesized using versatile, low cost, and environmentally friendly route. Therefore, mesoporous carbon materials were prepared in the monolith form, followed by treatment with the integrated pyrolysis of both carbonization and physical activation. In addition, there are detailed studies and analysis on the influences of chemical activation processes under different concentrations on the textural properties, morphology, crystalline degree, chemical elements and electrochemical performance. These mesoporous carbon possess the highest specific surface area of 489.81 m2 g-1, with a pore volume of 0.293 cm3 g-1, and well-developed mesoporosity. Hence, the electrode of mesoporous carbon for supercapacitor in two electrode system with 1 M H2SO4, exhibits a high specific capacitance of 280 F g-1 without heteroatom doping. This report provides an effective route to utilize the novel biomass of fallen teak leaves, with the potential benefits of waste reduction and the production of excellent electrode to serve as energy storage materials.

View article

The authors would like to thank the DRPM Kemenristek- Dikti through the second year Project of PD (396/ UN. with the title “High-density micro-and nano carbon fiber made from biomass based materials for supercapacitor electrodes”.

1.Zakeri, B., Syri, S., (2015). Electrical energy storage systems: A comparative life cycle cost analysis. Renew. Sustain. Energy Rev., vol. 42, 569–596, DOI: 10.1016/j.rser.2014.10.011

2. Koohi-Fayegh, S., Rosen, M.A., (2020). A review of energy storage types, applications and recent developments. J. Energy Storage, vol. 27, 101047, DOI: 10.1016/j.est.2019.101047

3. Lefebvre, D., Tezel, F.H., (2017). A review of energy storage technologies with a focus on adsorption thermal energy storage processes for heating applications. Renew. Sustain. Energy Rev., vol. 67, 116– 125, DOI: 10.1016/j.rser.2016.08.019

4. Khiari, B., Jeguirim, M., Limousy, L., Bennici, S., (2019). Biomass derived chars for energy applications. Renew. Sustain. Energy Rev., vol. 108, 253– 273, DOI: 10.1016/j.rser.2019.03.057‚

5. Huang, J., Chen, L., Dong, H., Zeng, Y., Hu, H., Zheng, M., Liu, Y., Xiao, Y., Liang, Y., (2017). Hierarchical porous carbon with network morphology derived from natural leaf for superior aqueous symmetrical supercapacitors. Electrochim. Acta, vol. 258, 504–511, DOI: 10.1016/j.electacta.2017.11.092

6. Iqbal, M.Z., Zakar, S., Haider, S.S., (2020). Role of aqueous electrolytes on the performance of electrochemical energy storage device. J. Electroanal. Chem., vol. 858, 113793, DOI: 10.1016/j.jelechem. 2019.113793

7. Yu, Y., Ye, Z., Chen, W., Wang, Q., Wang, H., Zhang, H., Peng, C., (2019). Plane tree bark-derived mesopore- dominant hierarchical carbon for high-voltage supercapacitors. Appl. Surf. Sci., vol. 507, 145190, DOI: 10.1016/j.apsusc.2019.145190

8. Zhao, C., Huang, Y., Zhao, C., Shao, X., Zhu, Z., (2018). Rose-derived 3D carbon nanosheets for high cyclability and extended voltage supercapacitors. Electrochim. Acta, vol. 291, 287–296, DOI: 10.1016/j.electacta.2018.09.136

9. Miller, E.E., Hua, Y., Tezel, F.H., (2018). Materials for energy storage: Review of electrode materials and methods of increasing capacitance for supercapacitors. J. Energy Storage, vol. 20, 30–40, DOI: 10.1016/j.est.2018.08.009

10. Fic, K., Platek, A., Piwek, J., Frackowiak, E., (2018). Sustainable materials for electrochemical capacitors. Mater. Today, vol. 21, 437–454, DOI: 10.1016/j. mattod.2018.03.005

11. Ratajczak, P., Suss, M.E., Kaasik, F., Beguin, F., (2018). Carbon electrodes for capacitive technologies. Energy Storage Mater, vol. 166, 126–145, DOI: 10.1016/j.ensm.2018.04.031

12. Inagaki, M., Konno, H., Tanaike, O., (2010). Carbon materials for electrochemical capacitors. J. Power Sources, vol. 195, 7880–7903, DOI: 10.1016/j.jpowsour. 2010.06.036

13. Zhao, X., Chen, H., Kong, F., Zhang, Y., Wang, S., Liu, S., Lucia, L.A., Fatehi, P., Pang, H., (2019). Fabrication, characteristics and applications of carbon materials with different morphologies and porous structures produced from wood liquefaction: A review. Chem. Eng. J., vol. 364, 226–243, DOI: 10.1016/j.cej.2019.01.159

14. Jiang, C., Yakaboylu, G.A., Yumak, T., Zondlo, J.W., Edward, M., Wang, J., (2020). Activated carbons prepared by indirect and direct CO2 activation of lignocellulosic biomass for supercapacitor electrodes. Renew. Energy, vol. 155, 38–52, DOI: 10.1016/j. renene.2020.03.111

15. Danish, M., Ahmad, T., (2018). A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renew. Sustain. Energy Rev., vol. 87, 1–21, DOI: 10.1016/j. rser.2018.02.003

16. Shanmuga, P.M., Divya, P., Rajalakshmi, R., (2020). A review status on characterization and electrochemical behaviour of biomass derived carbon materials for energy storage supercapacitors. Sustain. Chem. Pharm., vol. 16, 100243, DOI: 10.1016/j. scp.2020.100243

17. Taer, E., Natalia, K., Apriwandi, A., Taslim, R., Farma, R., (2020). The synthesis of activated carbon nanofiber electrode made from acacia leaves (Acacia mangium wild) as supercapacitors, Adv. Nat. Sci: Nanosci. Nanotechnol., vol. 11, 025007, DOI: 10.1088/2043-6254/ab8b60

18. Mohammedkhair, A.K., Aziz, M.A., Shah, S.S., Shaikh, M.N., Jamil, A.K., Qasem, M.A.A. Buliyaminu, I.A. Yamani, Z.H., (2020). Effect of an activating agent on the physicochemical properties and supercapacitor performance of naturally nitrogen-enriched carbon derived from Albizia procera leaves. Arabian Journal of Chemistry, vol. 13, 6161-6173, DOI: 10.1016/j.arabjc.2020.05.017

19. Jain, D., Kanungo, J., Tripathi, S.K., (2020). Enhancement in performance of supercapacitor using eucalyptus leaves derived activated carbon electrode with CH3COONa and HQ electrolytes: A step towards environment benign supercapacitor. J. Alloys Compd., vol. 832, 154956, DOI: 10.1016/j.jallcom. 2020.154956

20. Zhang, Y., Wang, C., Jiang, H., Wang, Q., Zheng, J., Meng, C., (2019). Cobalt-nickel silicate hydroxide on amorphous carbon derived from bamboo leaves for hybrid supercapacitors. Chem. Eng. J., vol. 375, 121938, DOI: 10.1016/j.cej.2019.121938

21. Wang, Y. Shao, C., Qiu, S., Zhu, Y., Qin, M., Meng, Y., Wang, Y., Chu, H., Zou, Y., Xiang, C., Zeng, J.L., Cao, Z., Xy, F., Sun, L., (2019). Nitrogen-doped porous carbon derived from ginkgo leaves with remarkable supercapacitance performance. Diam. Relat. Mater., vol. 98, 107475, DOI: 10.1016/j.diamond. 2019.107475

22. Lu, Q., Zhou, S., Li, B., Wei, H., Zhang, D., Hu, J., Zhang, J., Liu, Q., Zhou, S., Li, B., Wei, H., Zhang, D., Hu, J., Zhang, L., Zhang, J., Liu, Q., (2020). Mesopore- rich carbon flakes derived from lotus leaves and it’s ultrahigh performance for supercapacitors. Electrochim. Acta, vol. 333, 135481, DOI: 10.1016/j. electacta.2019.135481

23. Divya, P., Rajalakshmi, R., (2020). Renewable low cost green functional mesoporous electrodes from Solanum lycopersicum leaves for supercapacitors. J. Energy Storage, vol. 27, 101149, DOI: 10.1016/j. est.2019.101149

24. Ma, H., Liu, Z., Wang, X., Zhang, C., Jiang, R., (2017). Supercapacitive performance of porous carbon materials derived from tree leaves. J. Renew. Sustain. Energy, vol. 9, 044105, DOI: 10.1063/1.4997019

25. Liu, Y., Wang, Y., Zhang, G., Wang, D., Dong, Y., (2016). Preparation of activated carbon from willow leaves and evaluation in electric double-layer capacitors. Mater. Lett., vol. 176, 60–63, DOI: 10.1016/j. matlet.2016.04.065

26. Sagala, S (2015). Fostering Community Participation to Wildfire: Experiences from Indonesia, Elsevier Inc., DOI: 10.1016/B978-0-12-410434-1.00007-5

27. Taer, E., Mardiah, M.A., Sugianto, Juliani, R., Awitdrus, Farma, R., (2019). An introductory study on activated carbon monolith electrodes fabrication from teak leaf waste. J. Technomaterials Phys., vol. 1, 31–38

28. Wang, Y., Qu, Q., Gao, S., Tang, G., Liu, K., He, S., Huang, C., (2019). Biomass derived carbon as binder-free electrode materials for supercapacitors. Carbon, vol. 155, 706–726, DOI: 10.1016/j.carbon. 2019.09.018

29. Moreno-Fernandez, G., Kunowsky, M., Lillo-rodenas, M.A., Ibanez, J., Rojo, J.M., (2017). New carbon monoliths for supercapacitor electrodes. looking at the double layer. ChemElectroChem, vol. 4, 1016–1025, DOI: 10.1002/celc.201600848

30. Taer, E., Taslim, R., Sugianto, Paiszal, M., Mukhlis., Mustika, W.S., Agustino., (2018). Meso-and microporous carbon electrode and its effect on the capacitive, energy and power properties of supercapacitor. Int. J. Power Electron. Drive Syst., vol. 9, 1263-1271, DOI: 10.11591/ijpeds.v9n3.pp1263-1271

31. Taer, E., Apriwandi., Handayani, R., Taslim, R., Awitdrus, Amri, A., Agustino., Iwantono, I., (2019). The Synthesis of Bridging Carbon Particles with Carbon Nanotubes from Areca catechu Husk Waste as Supercapacitor Electrodes. Int. J. Electrochem. Sci., vol. 14, 9436–9448, DOI: 10.20964/2019.10.34

32. Indonesia, D.J.K.I.R., (2015) Berita resmi paten sederhana seri-A. vol. 3, 1–3

33. Taer, E., Sugianto., Sumantre, M.A., Taslim, R., Iwantono, Dahlan, D., Deraman, M., (2014). Eggs Shell Membrane as Natural Separator for Supercapacitor Applications. Adv. Mater. Res., vol. 896, 66–69, DOI: 10.4028/

34. Yang, X., Kong, L., Cao, M., Liu, X., Li, X., (2020). Porous nanosheets-based carbon aerogel derived from sustainable rattan for supercapacitors application. Ind. Crops Prod. 145 (2020) 112100, DOI: 10.1016/j.indcrop.2020.112100

35. Taer, E., Apriwandi., Yusriwandi., Mustika, W.S., Zulkifli., Taslim, R., Sugianto, Kurniasih B., Agustino., Dewi, P. (2018). Comparative study of CO2 and H2O activation in the synthesis of carbon electrode for supercapacitors. AIP Conf. Proc. 030036, 10.1063/1.5021229

36. Romero-rangel, C., Guillen-lopez, A., Mejía-mendoza, L.M., Robles, M., Espinosa-torres, N.D., Muniz, j., (2019). Approaches on the understanding of nanoporous carbon reactivity with polyatomic ions. Appl. Surf. Sci., vol. 495, 143392, DOI: 10.1016/j. apsusc.2019.07.134

37. Yahya, M.A., Al-qodah, Z., Ngah, C.W.Z, (2015). Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renew. Sustain. Energy Rev., vol. 46, 218–235, DOI: 10.1016/j.rser.2015.02.051

38. Wei, X., Wei, J., Li, Y., Zou, H., (2019). Robust hierarchically interconnected porous carbons derived from discarded Rhus typhina fruits for ultrahigh capacitive performance supercapacitors. J. Power Sources, vol. 414, 13–23, DOI: 10.1016/j.jpowsour. 2018.12.064

39. Xue, M., Lu, W., Chen, C., Tan, Y., Li, B., Zhang, C., (2019). Optimized synthesis of banana peel derived porous carbon and its application in lithium sulfur batteries. Mater. Res. Bull., vol. 112, 269–280, DOI: 10.1016/j.materresbull.2018.12.035

40. Mitravinda, T., Nanaji, K., Anandan, S., Jyothirmayi, A., Chakravadhanula, V.S.K., Sharma, C.S., Rao, T.N., (2018). Facile Synthesis of Corn Silk Derived Nanoporous Carbon for an Improved Supercapacitor Performance. J. Electrochem. Soc., vol. 165, 3369–3379, DOI: 10.1149/2.0621814jes

41. Ghosh, S., Santhosh, R., Jeniffer, S., Raghavan, V., Jacob, G., Nanaji, K., Kollu, P., Jeong, S.K., Grace, A.N., (2019). Natural biomass derived hard carbon and activated carbons as electrochemical supercapacitor electrodes. Sci. Rep., vol. 9, 16315, DOI: 10.1038/s41598-019-52006-x

42. Taer, E., Taslim, R., Mustika, W.S., Nurjanah, S., Yani, R.I., Sari, Y.P., Yusra, H., Awitdrus., Apriwandi., Agustino., Tahir, D., (2019). Preparation of mission grass flower-based activated carbon monolith electrode for supercapacitor application. Int. J. Electrochem. Sci., vol. 14, 7317–7331, DOI: 10.20964/2019.08.82

43. Kumar, K., Saxena, R.K., Kothari, R., Suri, D.K, Kaushik, K., Bohra, J.N, (1997). Correlation between adsorption and x-ray diffraction studies on viscose rayon based activated carbon cloth. Carbon, vol. 35, 1842–1844, DOI: 10./1016/S0008-6223(97)87258-2

44. Taer, E., Dewi, P., Syech, R., Taslim, R., Salomo., Susanti, Y., Purnama, A., Apriwandi., Agustino., Setiadi, R.N., (2018). The synthesis of carbon electrode supercapacitor from durian shell based on variations in the activation time. AIP Conf. Proc., vol. 1927, 030026, DOI: 10.1063/1.5021219

45. Song, X., Ma, X., Li, Y., Ding, L., Jiang, R., (2019). Tea waste derived microporous active carbon with enhanced double-layer supercapacitor behaviors. Appl. Surf. Sci., vol. 487, 189–197, DOI: 10.1016/j. apsusc.2019.04.277

46. Azwar, E., Adibah, W., Mahari, W., Huang, J., (2018). Transformation of biomass into carbon nanofiber for supercapacitor application: A review. Int. J. Hydrogen Energy, vol. 43, 20811–20821, DOI: 10.1016/j. ijhydene.2018.09.111

47. Taer, E., Taslim, R., Mustika, W.S., Kurniasih, B., Agustino., Afrianda, A., Apriwandi., (2018). Production of an activated carbon from a banana stem and its application as electrode materials for supercapacitors. Int. J. Electrochem. Sci., vol. 13, 8428–8439, DOI: 10.20964/2018.09.55

48. Zhu, X., Yu, S., Xu, K., Zhang, Y., Zhang, L., Lou, G., Wu, Y., Zhu, E., Chen, H., Shen, Z., Bao, B., Fu, S., (2018). Sustainable activated carbons from dead ginkgo leaves for supercapacitor electrode active materials. Chem. Eng. Sci., vol. 181, 36–45, DOI: 10.1016/j.ces.2018.02.004

49. Chen, H., Guo, Y., Wang, F., Wang, G., Qi, P., Guo, X., Dai, B., (2017). An activated carbon derived from tobacco waste for use as a supercapacitor electrode material. New Carbon Mater., vol. 32, 592–599, DOI: 10.1016/S1872-5805(17)60140-9

50. Farma, R., Deraman, M., Awitdrus, A., Talib, I.A., Taer, E., Basri, N.H., (2013). Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors. Bioresour. Technol., vol. 132, 254–261, DOI: 10.1016/j.biortech.2013.01.044

51. Zhao, Y., Lu, M., Tao, P., Zhang, Y., Gong, X., Yang, Z., Zhang, G., Li, H., (2016). Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors. J. Power Sources, vol. 307, 391–400, DOI: 10.1016/j.jpowsour.2016.01.020

52. Huang, Y., Liu, Y., Zhao, G., Chen, J.Y., (2017). Sustainable activated carbon fiber from sawdust by reactivation for high-performance supercapacitors. J. Mater. Sci., vol. 52, 478–488, DOI: 10.1007/s10853- 016-0347-0

53. Ahmed, S., Rafat, M., Ahmed, A., (2018). Nitrogen doped activated carbon derived from orange peel for supercapacitor application. Adv. Nat. Sci: Nanosci. Nanotechnol., vol. 9, 035008, DOI: 10.1088/2043- 6254/aad5d4

54. Ahmed, S., Parvaz, M., Johari, R., Rafat, M., (2018). Studies on activated carbon derived from neem (azadirachta indica) bio-waste, and its application as supercapacitor electrode. Mater. Res. Express, vol. 5, 045601, DOI: 10.1088/2053-1591/aab924

55. Rawal, S., Joshi, B., Kumar, Y., (2018). Synthesis and characterization of activated carbon from the biomass of Saccharum bengalense for electrochemical supercapacitors. J. Energy Storage, vol. 20, 418–426, DOI: 10.1016/j.est.2018.10.009.

56. Sankar, S., Talha, A., Ahmed, A., Inamdar, A.I., Im, H., Bin, Y., Lee, Y., Young, D., Lee, S., (2019). Biomass-derived ultrathin mesoporous graphitic carbon nano flakes as stable electrode material for high-performance supercapacitors. Mater. Des., vol. 169, 107688, DOI: 10.1016/j.matdes.2019.107688.

57. Lota, G., Centeno, T.A., Frackowiak E., Stoeckli, F, (2008). Improvement of the structural and chemical properties of a commercial activated carbon for its application in electrochemical capacitors. Electrochim. Acta, vol. 53, 2210–2216, DOI: 10.1016/j.electacta.2007.09.028.

58. Wang, W., Zhu, F., Jia, W., Wu, Y., Zhao, L., Yu, L., Chen, Y., Shen, Z, (2016). Electrochemical performance of activated carbons with different specific surface area as supercapacitor electrode materials. Int. J. Electrochem. Sci., vol. 11, 6688 –6695, DOI: 10.20964/2016.08.40