Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science


DOI: 10.5937/jaes0-28781 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 19 article 798 pages: 334-343

Nabila Aprianti
Universitas Sriwijaya, Graduate School, Doctoral Program of Environmental Science, Palembang, Indonesia

Muhammad Faizal*
Universitas Sriwijaya, Faculty of Engineering, Chemical Engineering Department, Palembang, Indonesia

Muhammad Said
Universitas Sriwijaya, Faculty of Engineering, Chemical Engineering Department, Palembang, Indonesia

Subriyer Nasir
Universitas Sriwijaya, Faculty of Engineering, Chemical Engineering Department, Palembang, Indonesia

Oil palm empty fruit bunch (OPEFB) is one of the enormous waste expected to become a renewable energy source. This study aimed to convert OPEFB into syngas through a gasification process using bentonite as a catalyst. The effects of temperature and product gas catalysts were investigated, and the efficiency of the gasification process was summarized. The process has used an updraft gasifier at 350-550°C and air as the gasification medium (ER 0.2). The results indicate that syngas can be produced by updraft gasifier. When the temperature increase, the H2 and CO rising. The highest H2 and CO content of 27.74% and 20.43% are obtained at 550°C when bentonite applied. HHV and LHV range of 3.38~12.79 MJ/Nm3 and 3.03~11.58 MJ/Nm3, respectively. The maximum carbon conversion efficiency (CCE) and cold gas efficiency (CGE) reach 85.49% and 82.34%. Bentonite has been able to increase the concentration of the gas composition especially H2 and CO and the heating value of syngas.

View article

This work was supported by PMDSU scholarship (Grant No. 270/SP2H/LT/DRPM/2019 and 0234/UN9/SB3. LP2M.PT/2019). The authors were also grateful to PT. Pupuk Sriwidjaja Palembang for gas analysis during this research.

1. Zhang, Y., Sivakumar, M., Yang, S., Enever, K., Ramezanianpour, M. (2017). Application of solar energy in water treatment processes: A review. Desalination, 428, 116–145, DOI: 10.1016/j.desal.2017.11.020.

2. Xu, X., Chen, Y. (2016). Air emissions from the oil and natural gas industry, International Journal of Environmental Studies. 73, 3, 422–436, DOI: 10.1080/00207233.2016.1165483.

3. Erickson, P., Lazarus, M. (2018). Would constraining US fossil fuel production affect global CO2 emissions? A case study of US leasing policy. Climate Change, 150, 1–2, 29–42, DOI: 10.1007/s10584- 018-2152-z.

4. Darmawan, A., Ajiwibowo M. W., Biddinika, M. K, Tokimatsu, K., Aziz, M. (2019). Black liquor-based hydrogen and power co-production: Combination of supercritical water gasification and syngas chemical looping. Applied Energy, 252, 113446, DOI: 10.1016/j.apenergy.2019.113446.

5. AlNouss A., McKay, G., Al-Ansari, T. (2020). Production of syngas via gasification using optimum blends of biomass. Journal of Cleaner Production, 242, 118499, DOI: 10.1016/j.jclepro.2019.118499.

6. Paulino, R. F. S., Essiptchouk, A. M., Silveira, J. L. (2020). The use of syngas from biomedical waste plasma gasification systems for electricity production in internal combustion: Thermodynamic and economic issues. Energy, 199, DOI: 10.1016/ 2020.117419.

7. Tamosiunas, A., Valatkevicius, P., Grigaitiene, V., Valincius, V., Striugas, N. (2016). A cleaner production of synthesis gas from glycerol using thermal water steam plasma. Journal of Cleaner Production, 130, 187–194, DOI: 10.1016/j.jclepro.2015.11.024.

8. Tabakaev, R., Shanenkov, I., Kazakov, A., Zavorin, A. (2017). Thermal processing of biomass into high-calorific solid composite fuel. Journal of Analytical and Applied Pyrolysis, 124, 94–102, DOI: 10.1016/j. jaap.2017.02.016.

9. Khan, Z., Yusup, S., Aslam, M., Inayat, A., Shahbaz, M., Vaqvi, S. R., Farooq, R., Watson, I. (2019). NO and SO2 emissions in palm kernel shell catalytic steam gasification with in-situ CO2 adsorption for hydrogen production in a pilot-scale fluidized bed gasification system. Journal of Cleaner Production, 236, 117636, DOI: 10.1016/j.jclepro.2019.117636.

10. Qiu, P., Du, C., Liu, L., Chen, L. (2018). Hydrogen and syngas production from catalytic steam gasification of char derived from ion-exchangeable Naand Ca-loaded coal. International Journal of Hydrogen Energy, 43, 27, 12034–12048, DOI: 10.1016/j. ijhydene.2018.04.055.

11. Tan, R. S., Alir, A., Mohamad, S. A., Md Isa, K., Tuan Abdullah, T. A. (2019). Ni-based catalysts for steam reforming of tar model derived from biomass gasification. E3S Web Conference, 90, 01015, DOI: 10.1051/e3sconf/20199001015.

12. Feng, D., Zhao, Y., Zhang, Y., Xu, H., Zhang, L., Sun, S. (2018). Catalytic mechanism of ion-exchanging alkali and alkaline earth metallic species on biochar reactivity during CO2/H2O gasification. Fuel, 212, 523–532, DOI: 10.1016/j.fuel.2017.10.045.

13. Zubek, K., Czerski, G., Porada, S. (2018). Determination of optimal temperature and amount of catalysts based on alkali and alkaline earth metals for steam gasification process of bituminous coal. Thermochimica Acta, 665, 60–69, DOI: 10.1016/j. tca.2018.05.006.

14. Spiewak, K., Czerski, G., Porada, S. (2020). Effect of K, Na and Ca-based catalysts on the steam gasification reactions of coal. Part I: Type and amount of one-component catalysts. Chemical Engineering Science, 229, 116024, DOI: 10.1016/j. ces.2020.116024.

15. Cavattoni, T., Garbarino, G. (2017). Catalytic abatement of biomass tar: a technological perspective of Ni-based catalysts. Rendiconti Lincei, 28, 69–85, DOI: 10.1007/s12210-017-0609-z.

16. Liu, X., Zhang, Y., Nahil, M. A., Williams, P. T., Wu, C. (2017). Development of Ni- and Fe- based catalysts with different metal particle sizes for the production of carbon nanotubes and hydrogen from thermo-chemical conversion of waste plastics. Journal of Analytical and Applied Pyrolysis, 125, 32–39, DOI: 10.1016/j.jaap.2017.05.001.

17. Abedi, A., Dalai, A. K. (2019). Steam gasification of oat hull pellets over Ni-based catalysts: Syngas yield and tar reduction. Fuel, 254, 115585, 2019, DOI: 10.1016/j.fuel.2019.05.168.

18. Ma, X., Zhao, X., Gu, J., Shi, J. (2019). Co-gasification of coal and biomass blends using dolomite and olivine as catalysts. Renewable Energy, 132, 509–514, DOI: 10.1016/j.renene.2018.07.077.

19. Hervy, M., Olcese, R., Bettahar, M. M., Mallet, M., Renard, A., Maldonado, L., Remy, D., Mauviel, G., Dufour, A. (2019). Evolution of dolomite composition and reactivity during biomass gasification. Applied Catalysis A: General., 572, 97–106, 2019, DOI: 10.1016/j.apcata.2018.12.014.

20. Islam, M. W. (2020). A review of dolomite catalyst for biomass gasification tar removal. Fuel, 267, 117095, DOI: 10.1016/j.fuel.2020.117095.

21. Suhaj, P., Haydary, J., Husar, J., Steltenpohl, P., Supa, I. (2019). Catalytic gasification of refuse-derived fuel in a two-stage laboratory scale pyrolysis/ gasification unit with catalyst based on clay minerals. Waste Management, 85, 1–10, DOI: 10.1016/j. wasman.2018.11.047.

22. Shang, S., Guo, C., Lan, K., Li, Z., He, W., Qin, Z., Li, J. (2020). Hydrogen-rich syngas production via catalytic gasification of sewage sludge and wheat straw using corn stalk char-supported catalysts. BioResources, 15, 2, 4294–4313, DOI: 10.15376/ biores.15.2.4294-4313.

23. Liao, Y., Deng, F., Xiao, B. (2019). Hydrogen-rich gas production from catalytic gasification of pine sawdust over Fe-Ce/olivine catalyst. International Journal of Energy Research, 43, 13, 7486–7495, 2019, doi: 10.1002/er.4781.

24. Sui, M., G. Li, Guan,Y. L., Li, C. M., Zhou, R. Q., Zarnegar, A. M. (2019). Hydrogen and syngas production from steam gasification of biomass using cement as catalyst. Biomass Conversion and Biorefinery, 10, 119–124, DOI: 10.1007/s13399-019- 00404-6.

25. Zho, L., Yang, Z., Tang, A., Huang, H., Wei, D., Yu, E., Lu, W. (2019). Steam-gasification of biomass with CaO as catalyst for hydrogen-rich syngas production. Journal of the Energy Institute, 95, 6, 1641– 1646, DOI: 10.1016/j.joei.2019.01.010.

26. Masindi, V., Gitari, M. W., Tutu, H., DeBeer, M. (2015). Efficiency of ball milled South African bentonite clay for remediation of acid mine drainage. Journal of Water Process Engineering, 8, 227–240, 2015, DOI: 10.1016/j.jwpe.2015.11.001.

27. Masindi, V., Ramakokovhu, M. M. (2020). The performance of thermally activated and vibratory ball milled South African bentonite clay for the removal of chromium ions from aqueous solution. Materials Today: Proceedings, DOI: 10.1016/j.matpr.2020.05.490.

28. Afolabi, R. O., Orodu, O. D., Efeovbokhan, V. E. (2017). Properties and application of Nigerian bentonite clay deposits for drilling mud formulation: Recent advances and future prospects. Applied Clay Science, 143, 39–49, DOI: 10.1016/j. clay.2017.03.009.

29. Afolabi, R. O., Ogunkunle, T. F., Olabode, O. A., Yusuf, E. O. (2018). Dataset on the beneficiation of a Nigerian bentonite clay mineral for drilling mud formulation. Data Brief, 20, 234–241, DOI: 10.1016/j. dib.2018.07.071.

30. Warsono, H. R. S., Kurniawan, W., Hinode, H. (2018). Utilization of modified Indonesia natural bentonite for dye removal. ASEAN Journal of Chemical Engineering, 18, 2, 13–21, DOI: 10.22146/ajche.49532.

31. Rahardjo, A. K., Susanto, M. J. J., Kurniawan, A., Indraswati, N., Ismadji, S. (2011). Modified Ponorogo bentonite for the removal of ampicillin from wastewater. Journal of Hazardous Materials, 190, 1–3, 1001–1008, DOI: 10.1016/j.jhazmat.2011.04.052.

32. Pradisty, N. A., Sihombing, R., Howe, R. F., Krisnandi, Y. K. (2017). Fe(III) oxide-modified Indonesian bentonite for catalytic photodegradation of phenol in water. Makara Journal of Science, 21, 1, 25–33, DOI: 10.7454/mss.v21i1.7534.

33. Kumar, A., Lingfa, P. (2020). Sodium bentonite and kaolin clays: Comparative study on their FT-IR, XRF, and XRD. Materials Today: Proceedings, 22, 737– 742, DOI: 10.1016/j.matpr.2019.10.037.

34. Ro, D., Shafaghat, H., Jang, S. H., Lee, H. W., Jung, S. C., Jae, J., Cha, J. S., Park, Y. K. (2019). Production of an upgraded lignin-derived bio-oil using the clay catalysts of bentonite and olivine and the spent FCC in a bench-scale fixed bed pyrolyzer. Environmental Research, 172, 658–664, DOI: 10.1016/j.envres. 2019.03.014.

35. Sewu, D. D., Lee, D. S., Tran, H. N., Woo, S. H. (2019). Effect of bentonite-mineral co-pyrolysis with macroalgae on physicochemical property and dye uptake capacity of bentonite/biochar composite. Journal of the Taiwan Institute of Chemical Engineers, 104, 106–113, DOI: 10.1016/j.jtice.2019.08.017.

36. Panda, A. K. (2018). Thermo-catalytic degradation of different plastics to drop in liquid fuel using calcium bentonite catalyst. International Journal of Industrial Chemistry, 9, 2, 167–176, DOI: 10.1007/ s40090-018-0147-2.

37. Kar, Y., G. Bozkurt, G., Yalman, Y. (2019). Liquid fuels from used transformer oil by catalytic cracking using bentonite catalyst. Environmental Progress and Sustainable Energy, 38, 4, 1–6, DOI: 10.1002/ ep.13080.

38. Wu, L., Wei, T. Y., Tong, Z. F., Zou, Y., Lin, Z. J., Sun, J. H. (2016) Bentonite-enhanced biodiesel production by NaOH-catalyzed transesterification of soybean oil with methanol. Fuel Processing Technology, 144, 334–340, DOI: 10.1016/j.fuproc.2015.12.017.

39. Wu, Q., Qiang, T. C., Zeng, G., Zhang, H., Huang, Y., Wang, Y. (2017). Sustainable and renewable energy from biomass wastes in palm oil industry: A case study in Malaysia. International Journal of Hydrogen Energy, 42, 37, 23871–23877, DOI: 10.1016/j. ijhydene.2017.03.147.

40. Hidayat, N., Suhartini, S., Utami, R. N., Pangestuti, M.B. (2020). Anaerobic digestion of fungally pre-treated oil palm empty fruit bunches: Energy and carbon emission footprint. IOP Conference Series: Earth and Environmental Science, 524, 1, DOI: 10.1088/1755-1315/524/1/012019.

41. Ariffin, M. A., Wan Mahmood, W. M. F., Harun, Z., Mohamed, R. (2017). Medium-scale gasification of oil palm empty fruit bunch for power generation. Journal of Material Cycles and Waste Management, 19, 3, 1244–1252, DOI: 10.1007/s10163-016-0518- 8.

42. Li, Y. H., Chen, H. H. (2018). Analysis of syngas production rate in empty fruit bunch steam gasification with varying control factors. International Journal of Hydrogen Energy, 43, 2, 667–675, DOI: 10.1016/j. ijhydene.2017.11.117.

43. Monir, M. U., Aziz, A. A., Vo, D. V. N., Khatun, F. (2020). Enhanced Hydrogen Generation from Empty Fruit Bunches by Charcoal Addition into a Downdraft Gasifier. Chemical Engineering Technology, 43, 4, 762–769, DOI: 10.1002/ceat.201900547.

44. Aprianti, N., Faizal, M., Said, M., Nasir, S. (2020). Valorization of palm empty fruit bunch waste for syngas production through gasification. Journal of Ecological Engineering, 21, 7, 17–26, DOI: 10.12911/22998993/125461.

45. Anisimov, P. N., Onuchin, E. M., Vishnevskaya, M. M., Nikolaevich, S. J., Andreeevich, M. A. (2016). The study of biomass moisture content impact on the efficiency of a power-producing unit with a gasifierand the stirling engine. Journal of Applied Engineering Science, 14, 3, 401–408, DOI: 10.5937/ jaes14-11010.

46. Oveisi, E., Sokhansanj, S., Lau, A., Lim, J., Bi, X., Preto, F., Mui, C. (2018). Characterization of recycled wood chips, syngas yield, and tar formation in an industrial updraft gasifier. Environments, 5, 7, 1–13, DOI: 10.3390/environments5070084.

47. Valdes, C. F., Marrugo, G., Chejne, F., Montoya, J. I., Gómez, C. A. (2015). Pilot-scale fluidized-bed co-gasification of palm kernel shell with sub-bituminous coal. Energy and Fuels, 29, 9, 5894–5901, DOI: 10.1021/acs.energyfuels.5b01342.

48. Shahbaz, M., Yusup, S., Inayat, A., Ammar, M., Patrick, D. O., Pratama, A., Naqvi, S. R. (2017). Syngas production from steam gasification of palm kernel shell with subsequent CO2 capture using CaO sorbent: An aspen plus modeling. Energy and Fuels, 31, 11, 12350–12357, DOI: 10.1021/acs.energyfuels. 7b02670.

49. Monir, M. U., Aziz, A. A., Kristanti, R. A., Yousuf, A. (2020). Syngas production from co-gasification of forest residue and charcoal in a pilot scale downdraft reactor. Waste and Biomass Valorization, 11, 2, 635–651, DOI: 10.1007/s12649-018-0513-5.

50. Isworo, Y. Y., Kim, G. M., Jeong, J. W., Jeon, C. H. (2020). Evaluation of torrefied empty fruit bunch (EFB) and kenaf combustion characteristics: Comparison study between EFB and kenaf based on microstructure analysis and thermogravimetric methods. Energy and Fuels, 34, 6, 7094–7104, DOI: 10.1021/acs.energyfuels.9b04380.

51. Nyakuma, B. B., Wong, S., Oladokun, O. (2019). Non-oxidative thermal decomposition of oil palm empty fruit bunch pellets: fuel characterisation, thermogravimetric, kinetic, and thermodynamic analyses. Biomass Conversion and Biorefinery, DOI: 10.1007/s13399-019-00568-1.

52. Monir, M. U., Aziz, A. A., Kristanti, R. A., Yousuf, A. (2018). Co-gasification of empty fruit bunch in a downdraft reactor: A pilot scale approach. Bioresource Technology Reports, 1, 39–49, DOI: 10.1016/j.biteb.2018.02.001.

53. Martinez, L. V., Rubiano, J. E., Figueredo, M., Gomez, M. F. (2020). Experimental study on the performance of gasification of corncobs in a downdraft fixed bed gasifier at various conditions. Renewable Energy, 148, 1216–1226, DOI: 10.1016/j. renene.2019.10.034.

54. Iryani, D. A., Kumagai, S., Nonaka, M., Sasaki, K., Hirajima, T. (2017). Characterization and Production of Solid Biofuel from Sugarcane Bagasse by Hydrothermal Carbonization. Waste and Biomass Valorization, 8, 6, 1941–1951, DOI: 10.1007/s12649-017- 9898-9.

55. Gautam, N., Chaurasia, A. (2020). Study on kinetics and bio-oil production from rice husk, rice straw, bamboo, sugarcane bagasse and neem bark in a fixed-bed pyrolysis process. Energy, 190, 116434, DOI: 10.1016/

56. Rout, T., Pradhan, D., Singh, R. K., Kumari, N. (2016). Exhaustive study of products obtained from coconut shell pyrolysis. Journal of Environmental Chemical Engineering, 4, 3, DOI: 10.1016/j.jece.2016.02.024.

57. Terzic, A., Pezo, L., Andric, L., Pavlovic, V. B., Mitic, V. V. (2017). Optimization of bentonite clay mechano- chemical activation using artificial neural network modeling. Ceramics International, 43, 2, 2549–2562, DOI: 10.1016/j.ceramint.2016.11.058.

58. Taher, T., Rohendi, D., Mohadi, R., Lesbani, A. (2019). Congo red dye removal from aqueous solution by acid-activated bentonite from sarolangun: kinetic, equilibrium, and thermodynamic studies. Arab Journal of Basic and Applied Sciences, 26, 1, 125– 136, DOI: 10.1080/25765299.2019.1576274.

59. Chaudhuri, S. D., Mandal, A., Dey, A., Chakrabarty, D. (2020). Tuning the swelling and rheological attributes of bentonite clay modified starch grafted polyacrylic acid based hydrogel. Applied Clay Science, 185, 105405, DOI: 10.1016/j.clay.2019.105405.

60. Zhu, J., Zhang, P., Qing, Y., Wen, K., Su, X., Ma, L., Wei, J., Liu, H., He, H., Xi, Y. (2017). Novel intercalation mechanism of zwitterionic surfactant modified montmorillonites. Applied Clay Science, 141, 265– 271, DOI: 10.1016/j.clay.2017.03.002.

61. Aminy, D. E., Mudasir, M., Rusdiarso, B. (2020). Immobilization of dithizone on natural bentonite as adsorbent of Cd(II) ion. Key Engineering Materials, 840, 22–28, DOI: 10.4028/ kem.840.22.

62. Chen, Z., Gao, S., Xu, G. (2017). Simultaneous production of CH4-rich syngas and high-quality tar from lignite by the coupling of noncatalytic/catalytic pyrolysis and gasification in a pressurized integrated fluidized bed. Applied Energy, 208, 1527–1537, DOI: 10.1016/j.apenergy.2017.08.227.

63. Oliveira, A, d. N. d., Lima, M. A. B. d., Pires, L. H. d. O., Silva, M.R. d., Luz, P. T. S. d., Angelica, R. S., Filho, G.N.R., Costa, C. E. F., Luque, R., Nascimento, L. A. S. d. (2019). Bentonites modified with phosphomolybdic heteropolyacid (HPMo) for biowaste to biofuel production. Materials, 12, 9, DOI: 10.3390/ ma12091431.

64. Han, T., Ding, S., Yang, W., Jönsson, P. (2019). Catalytic pyrolysis of lignin using low-cost materials with different acidities and textural properties as catalysts. Chemical Engineering Journal, 373, 846–856, DOI: 10.1016/j.cej.2019.05.125.

65. Gao, X., Zhong, H., Yao, G., Guo, W., Jin, F. (2016). Hydrothermal conversion of glucose into organic acids with bentonite as a solid-base catalyst. Catalysis Today, 274, 49–54, DOI: 10.1016/j.cattod. 2016.02.008.

66. Yang, W. S., Lee, J. S., Park, S. W., Kang, J. J., Alam, T., Seo, Y. C. (2016). Gasification applicability study of polyurethane solid refuse fuel fabricated from electric waste by measuring syngas and nitrogenous pollutant gases. Journal of Material Cycles and Waste Management, 18, 3, 509–516, DOI: 10.1007/s10163-016-0512-1.

67. Li, Z., Xu, H., Yang, W., Zhou, A., Xu, M. (2019). CFD simulation of a fluidized bed reactor for biomass chemical looping gasification with continuous feedstock. Energy Conversion and Management, 201, 112143, DOI: 10.1016/j.enconman.2019.112143.

68. Park, S. W., Lee, J. S., Yang, W. S., Alam, M. T., Seo, Y. C. (2020). A comparative study of the gasification of solid refuse fuel in downdraft fixed bed and bubbling fluidized bed reactors. Waste and Biomass Valorization, 11, 2345–2356, DOI: 10.1007/s12649- 018-0431-6. 10