Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science


DOI: 10.5937/jaes0-30475 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 19 article 842 pages: 681-687

Yakni Idris
Civil Engineering Department, Universitas Sriwijaya, Palembang, Indonesia

Ratna Dewi*
Civil Engineering Department, Universitas Sriwijaya, Palembang, Indonesia

Yulindasari Sutejo
Civil Engineering Department, Universitas Sriwijaya, Palembang, Indonesia

Said Agil Al Munawar
Civil Engineering Department, Universitas Sriwijaya, Palembang, Indonesia

View article

1. A. Hanna and M. A. El-Rahman. (1990). Ultimate bearing capacity of triangular shell strip footings on sand. Journal of Geotechnical Engineering., vol. 116, no. 12, 1851–1863, doi: 10.1061/(ASCE)0733-9410(1990)116:12(1851).

2. W. R. Azzam and A. M. Nasr. (2015). Bearing capacity of shell strip footing on reinforced sand. Journal of Advanced Research, vol. 6, no. 5, 727–737, doi: 10.1016/j.jare.2014.04.003.

3. R. Rinaldi, M. Abdel-Rahman, and A. Hanna. (2018). Experimental Investigation on Shell Footing Models Employing High-Performance Concrete. Facing the Challenges in Structural Engineering. GeoMEast 2017, p. 373–390, doi: 10.1007/978-3-319-61914-9_29.

4. B. B. K. Huat and T. A. Mohammed. (2006). Finite Element Study Using FE Code (PLAXIS) on the Geotechnical Behavior of Shell Footings. Journal of Computer Science, vol. 2, no. 1, 104–108, doi: 10.3844/jcssp.2006.104.108.

5. N. P. Kurian and V. M. Jayakrishna Devaki. (2005). Analytical studies on the geotechnical performance of shell foundations. Canadian Geotechnical Journal, vol. 42, 562–573, doi: 10.1139/t04-110.

6. T. Lamya and M. K. Sheeja. (2021). Analytical Assessment on the Behaviour of Conical Shell Foundation. Proceedings of SECON 2020, p. 307–316, doi: 10.1007/978-3-030-55115-5_29.

7. J. E. Colmenares, S. R. Kang, Y. J. Shin, and J. H. Shin. (2014). Ultimate bearing capacity of conical shell foundations. Structural Engineering and Mechanics., vol. 52, no. 3, p. 507–523, doi: 10.12989/sem.2014.52.3.507.

8. A. Hanna and M. Abdel-Rahman. (1998). Experimental investigation of shell foundations on dry sand. Canadian Geotechnical Journal, vol. 35, no. 5, p. 847–857, doi: 10.1139/t98-049.

9. M. S. El-kady and E. F. Badrawi. (2017). Performance of isolated and folded footings. Journal of Computational Design and Engineering, vol. 4, no. 2, 150–157, doi: 10.1016/j.jcde.2016.09.001.

10. S. Timoshenko and S. Woinowsky-Krieger. (1959). Theory of Plates and Shells. New York: McGraw-Hill.

11. U.S. Army Corps of Engineers.(1991) Design of Pile Foundations. Engineering Manual 1110-2-2906. Washington, DC.

12. Y. Y. and A. H. M. Olgun. (2017). Interpreting Load-Settlement Curves of Pile Foundations by Graphical Methods. Eurasian Journal of Civil Engineering and Architecture, vol. 1, no. 1, p. 1–10.

13. T. Salem, N. R. N., El-Sakhawy, and A. A. El-Latief. (2021). Experimental and numerical study for the optimization of bottom of foundation shapes on soft soils. Innovative Infrastructure Solutions, vol. 6, no. 2, doi: 10.1007/s41062-021-00455-7.

14. S. Thilakan and N. P. Naik. (2016). Geotechnical Behaviour of Strip Curved Shell. International Journal of Current Engineering and Science Research (IJCESR), vol. 3, no. 3, pp. 13–17.