Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science


DOI: 10.5937/jaes0-30227 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Volume 19 article 881 pages: 1013-1019

Andrés Pacheco Lancheros
University of Cartagena, Engineering Faculty, Department of Chemical Engineering, Cartagena, Colombia

Aura Lombana Puerta
University of Cartagena, Engineering Faculty, Department of Chemical Engineering, Cartagena, Colombia

Álvaro Realpe Jiménez
University of Cartagena, Engineering Faculty, Department of Chemical Engineering, Cartagena, Colombia

Dina Mendoza Beltrán
University of Cartagena, Engineering Faculty, Department of Chemical Engineering, Cartagena, Colombia

María Acevedo Morantes*
University of Cartagena, Engineering Faculty, Department of Chemical Engineering, Cartagena, Colombia

Proton Exchange Membranes (PEMs) were synthesized from Poly (oxy-1,4-phenylenesulfonyl-1,4-phenylene) (PES), sulfonated for 1 and 2 h, and modified with 0, 5, and 10 wt% nanoclays. The membranes were characterized by evaluating their physicochemical properties, such as ion exchange capacity, oxidative stability, porosity and water uptake. PEMs were modified with the sulfonation time and nanoclays addition to favor the mechanical properties and proton conductivity, which were evaluated. The sulfonation time and the concentration of nanoclays directly favored properties such as contact angle, water absorption, porosity, and mechanical properties. However, a higher concentration of nanoclays (e.g., 10 wt%) damaged the mechanical properties of PES membranes specifically. The membrane with 5 wt% of nanoclay and a sulfonation time of 2 h achieved the best performance.

View article

The authors gratefully acknowledge to the University of Cartagena for the support to perform this project with code No. 022-2015.

1. Chang, C.C., Liao, Y.T., Chang, Y.W. (2019). Life Cycle Assessment of Carbon Footprint in Public Transportation - A Case Study of Bus Route NO. 2 in Tainan City, Taiwan. Procedia Manufacturing, vol. 30, 388–395.

2. Srinivasan, S.S., Stefanakos, E.K. (2019). Clean Energy and Fuel Storage. Applied Science, vol. 9, 3270.

3. Alaswad, A., Palumbo, A., Dassisti, M., Olabi, A.G. (2016). Fuel Cell Technologies, Applications, and State of the Art: A Reference Guide. Amsterdam, Elsevier Inc.

4. Ansari, Y., Tucker, T.G., Huang, W., Klein, I.S., Lee, S.-Y., Yarger, J.L., Angell, C.A. (2016). A flexible all-inorganic fuel cell membrane with conductivity above Nafion, and durable operation at 150 C. J. Power Sources, vol. 303, 142–149, DOI: 10.1016/j.jpowsour.2015.10.034.

5. Yin, C., Wang, L., Li, J., Zhou, Y., Zhang, H., Fang, P., He, C. (2017). Positron annihilation characteristics, water uptake and proton conductivity of composite Nafion membranes, Phys. Chem. Chem. Phys., vol. 19, 15953–15961, DOI: 10. 1039/c7cp03052e.

6. Alaswad, A., Palumbo, A., Dassisti, M, Olabi, A.G. (2016). Fuel Cell Technologies, Applications, and State of the Art. A Reference Guide. Reference Module in Materials Science and Materials Engineering, DOI: 10.1016/B978-0-12-803581-8.04009-1.

7. Risbud, M., Menictas, C., Skyllas-Kazacos, M., Noack, J. (2019). Vanadium Oxygen Fuel Cell Utilising High Concentration Electrolyte. Batteries, vol. 5, no. 1, 24, DOI: 10.3390/batteries5010024.

8. Realpe-Jiménez, A., Méndez, N., Toscano, E., Acevedo, M. (2015). Síntesis y Caracterización Fisicoquímica de una Membrana Cargada con TiO2 Preparada a Partir de la Sulfonación de un Copolímero de Éster Acrílico y Estireno. Información Tecnológica, vol. 26, no. 5, 97–104.

9. Realpe-Jiménez, A., Reina, R., Acevedo-Morantes, M. (2018). Synthesis of a Proton Exchange Membrane from SEBS Copolymer to Generate Energy in a Fuel Cell. International Journal of Applied Engineering Research, vol. 13, no. 18, 13488-13491.

10. Ladhar, A., Arous, M., Kaddami, H., Raihane, M., Kallel, A., Grac¸a, M.P.F., Costa, L.C. (2015). Ionic hopping conductivity in potential batteries separator based on natural rubber-nanocellulose green nanocomposites. J. Mol. Liq., vol. 211 792–802, DOI: 10.1016/j.molliq.2015.08.014.

11. Durán, J.D.G., Ramos-Tejada, M.M., Arroyo, F.J., González-Caballero, F. (2000). Rheological and electrokinetic properties of sodium montmorillonite suspensions: I. Rheological properties and interparticle energy of interaction. Journal of Colloid and Interface Science, vol. 229, 107–117, DOI: 10.1006/jcis.2000.6956.

12. Mokrini, A., Acosta, J.L. (2001). Studies of sulfonated block copolymer and its blends. Polymer, vol. 42, no. 1, 9–15, DOI:10.1016/S0032-3861(00)00353-0.

13. Ibrahim, A., Hossain, O., Chaggar, J., Steinberger-Wilckens, R., El-Kharouf, A. (2020). GO-nafion composite membrane development for enabling intermediate temperature operation of polymer electrolyte fuel cell. International Journal of Hydrogen Energy, vol. 45, no. 8, 5526-5534, DOI: 10.1016/j.ijhydene.2019.05.210.

14. Saedi S., Madaeni, S.S., Shamsabadi, A.A. (2014). Fabrication of asymmetric polyethersulfone membranes for separation of carbon dioxide from methane using polyetherimide as polymeric additive, Chemical Engineering Research and Design, vol. 92, no. 11, 2431-2438, DOI: 10.1016/j.cherd.2014.02.010.

15. Dai H., Guan, R., Li, C., Liu, J. (2007). Development and characterization of sulfonated poly(ether sulfone) for proton exchange membrane materials, Solid State Ionics, vol. 178, no. 5–6, 339-345, DOI: 10.1016/j.ssi.2006.09.013.

16. Ghaemi, N., Madaeni, S. S., Alizadeh, A., Rajabi, H., Daraei, P. (2011). Preparation, characterization and performance of polyethersulfone/organically modified montmorillonite nanocomposite membranes in removal of pesticides. Journal of Membrane Science, vol. 382, no. 1–2, 135–147, DOI: 10.1016/j.memsci.2011.08.004.

17. Rezaei-DashtArzhandi, M., Ismail, A. F., Bakeri, Gh., Hashemifard, S. A., Matsuura, T. (2015). Effect of hydrophobic montmorillonite (MMT) on PVDF and PEI hollow fiber membranes in gas–liquid contacting process: a comparative study. RSC Adv., vol. 5, 103811-103821, DOI: 10.1039/C5RA21754G.

18. Raghavendra S. Hebbar, R.S., Isloor, A.M., Ismail, A.F. (2014). Preparation and evaluation of heavy metal rejection properties of Polyetherimide/Porous activated bentonite clay nanocomposite membrane. RSC Adv., vol. 4, 47240-47248, DOI: 10.1039/C4RA09018G.

19. Raja Rafidah R. S., Rashmi W., Khalid M., Wong W.Y., Priyanka J. (2020). Recent Progress in the Development of Aromatic Polymer-Based Proton Exchange Membranes for Fuel Cell Applications, Polymers, vol. 12, 1061, DOI:10.3390/polym12051061

20. Klaysom, C., Ladewig, B. P., Lu, G. Q. M., Wang, L. (2011). Preparation and characterization of sulfonated polyethersulfone for cation-exchange membranes. Journal of Membrane Science, vol. 368, no. 1-2, 48-53, Doi:10.1016/j.memsci.2010.11.006

21. Radmanesh, F., Rijnaarts, T., Moheb, A., Sadeghi, M., De Vos, W. M. (2019). Enhanced selectivity and performance of heterogeneous cation exchange membranes through addition of sulfonated and protonated Montmorillonite. Journal of Colloid and Interface Science, vol. 533, 658-670, DOI: 10.1016/j.jcis.2018.08.100.

22. Vinothkannan, M., Rhan Kim, A., Gnana kumar, G. , Yoond, J., Jin Yoo, D. (2017). Toward improved mechanical strength, oxidative stability and proton conductivity of an aligned quadratic hybrid (SPEEK/FPAPB/Fe3O4-FGO) membrane for application in high temperature and low humidity fuel cells. RSC Adv., vol. 7, 39034, DOI: 10.1039/c7ra07063b.

23. Abderezzak, B. (2018). Introduction to Hydrogen Technology. Introduction to Transfer Phenomena in PEM Fuel Cell, 1–51, DOI:10.1016/b978-1-78548-291-5.50001-9.

24. Avci, A.H., Rijnaarts, T., Fontananova, E., Di Profio, G., Vankelecom, I.F.V., De Vos, W. M., Curcio, E. (2019). Sulfonated polyethersulfone based cation exchange membranes for reverse electrodialysis under high salinity gradients. Journal of Membrane Science, vol. 595, 117585, DOI:10.1016/j.memsci.2019.

25. Sigwadi, R., Dhlamini, M.S., Mokrani, T., Ṋemavhola, F., Nonjola, P.F., Msomi, P.F. (2019). The proton conductivity and mechanical properties of Nafion®/ ZrP nanocomposite membrane. Heliyon, vol. 5, no. 8, e02240, DOI: 10.1016/j.heliyon.2019.e02240.

26. Ureña, N., Pérez-Prior, M., del Río, C., Várez, A., Sanchez, J., Iojoiu, C., Levenfeld, B. (2019). Multiblock copolymers of sulfonated PSU/PPSU Poly(ether sulfone)s as solid electrolytes for proton exchange membrane fuel cells. Electrochimica Acta, vol. 302, 428-440, DOI: 10.1016/j.electacta.2019.01.112.

27. Yin, C., Wang, Z., Luo, Y., Li, J., Zhou, Y., Zhang, X., Zhang, H., Fang, P., He, C. (2018). Thermal annealing on free volumes, crystallinity and proton conductivity of Nafion membranes. Journal of Physics and Chemistry of Solids, vol. 120, 71-78, DOI: 10.1016/j.jpcs.2018.04.028.

28. Yin, C., Xiong, B., Liu, Q., Li, J., Qian, L., Zhou, Y., He, C. (2019). Lateral-aligned sulfonated carbon-nanotubes/Nafion composite membranes with high proton conductivity and improved mechanical properties. Journal of Membrane Science, vol, 591, 117356, DOI: 10.1016/j.memsci.2019.117356.

29. Yang, S.S., Bocarsly, A.B., Tulyani, S., Benziger, J.B. (2004). A comparison of physical properties and fuel cell performance of Nafion and zirconium phosphate/Nafion composite membranes. Journal of Membrane Science, vol. 237, no. 1-2, 145–161

30. Kawamura, J., Hattori, K., Hongo, T., Asayama, R., Kuwata, N., Hattori T., Mizusaki, J. (2005). Microscopic states of water and methanol in Nafion membrane observed by NMR micro imaging. Solid State Ionics, vol.176, no.31-34, 2451-2456.

31. Ochi, S., Kamishima, O., Mizusaki, J., Kawamura, J. (2009). Investigation of proton diffusion in Nafion®117 membrane by electrical conductivity and NMR. Solid State Ionics, vol. 180, 580–584, DOI: 10.1016/j.ssi.2008.12.035.

32. Ruiz, E.E., Mina, J.H., Diosa, J.E. (2020). Development of a Chitosan/PVA/TiO2 Nanocomposite for Application as a Solid Polymeric Electrolyte in Fuel Cells. Polymers, vol. 12, 1691; DOI:10.3390/polym12081691.

33. Blanco, L.T., Loureiro, F.A.M., Pereira, R.P., Rocco, A.M. (2013). Sulfonic Acid Bisphenol a Membranes for Fuel Cell Applications. ECS Transactions, 45 (23) 21-29, DOI: 10.1149/04523.0021ecst