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CONTRIBUTION OF A FORM-FIND SHAPE OF PIN-ENDED ARCH
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This paper presents the numerical application of a form-fi nd two-pin arch shape with constant 
cross-section made of concrete. This investigation is carried out for arches with any span to height (L:h) ratio and 
any ratio of uniformly distributed load (UDL) to self-weight (SW) in which the geometry is a function of loading. The 
form-fi nd arch shape is the one comprising only axial forces named momentless arch in this paper. The contribution 
of such a form-fi nd arch is shown in a case study fi rstly through comparing its defl ection with the most favourable 
arch shape under UDL:SW  > 1 which known as parabolic form. Secondly, the fi rst failure of arch cross-section for 
form-fi nd arch is evaluated against parabolic one subjected to the same permanent load. Results show the maximum 
vertical displacement of the form-fi nd arch to be almost half of the maximum vertical displacement of its parabolic 
equal. To have the same maximum displacement, the thickness of the form-fi nd arch could be reduced to half of its 
initial value leading to mass reduction. Furthermore, the former arch shows the fi rst cross-sectional failure for 24% 
higher vertical displacement at the arch crown compared to parabolic arch.
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INTRODUCTION

As a widely accepted fact, decision-making has played 
a major role in any fi eld of human activity. As concerns 
structural design, optimization techniques facilitate the 
way for a designer to make a decision that achieves the 
highest advantage from the existing resources. Desirable 
forms for arches under different ratios of uniformly dis-
tributed load (UDL) to self-weight (SW) are: a parabolic 
arch for UDL:SW ≥ 1, and a catenary arch for UDL:SW < 
1 (Pournaghshband, 2016) [01]. In the traditional proce-
dure of designing an arch structure, the shape is deter-
mined from the outset (Curtin et al, 2006) [02]. However, 
this method of designing may lead to an ineffi cient form. 
Otto and Rasch described form-fi nding as a technique 
which uses optimization methods to fi nd the optimal form 
under a particular load condition (Otto and Rasch, 1995) 
[03]. Form-fi nding was also defi ned as a technique for 
fi nding the most effi cient shape of a structure under a 
specifi c load condition (Megson, 2006 and Millais, 2005) 
[04] and [05]. The proposed technique involves physical, 
numerical and mathematical modelling, that has been 
applied to arch structures. The developed techniques 
applied to two-pin arches showed the form-fi nd shape as 
the momentless form. 
In experimental form-fi nding investigation, Gaudi was 
well known for his novel forms of vertical and inverted 
catenaries (Huerta, 2006) [06]. To shape catenaries 
when creating a vault or natural curved arch, Gaudi 
hung different weights on a series of strings and then 
photographed the shape and inverted it to get the re-
quired form. The stability of catenary arches subjected to 
SW only that can transfer only axial forces was explored 
at the University of Stuttgart (Tomlow et al, 1989) [07]. 
Catenary arches subjected to SW only known as mo-
mentless form showed great stability while being rocked 

in their experimental investigation (Megson, 2006 and 
Millais, 2005) [03] and [04]. 
Inspired by physical hanging models, Kilian and Ochsen-
dorf applied a well-known programme named the par-
ticle-spring system to fi nd a funicular form that could 
transmit axial forces only (Kilian and Ochsendorf, 2005) 
[08]. They used an iterative solver to fi nd the equilibrium 
state of each mass. Thus the optimal structural form was 
achieved once the whole system was in equilibrium.
One of the early analytical studies into optimisation of 
arches was carried out by Tadjbakhsh and Farshad. 
They investigated the possibility of optimal shape of 
funicular arches, when both the bending moment and 
shear forces are zero, and their stability. However, the 
general shape of the arch was defi ned from the begin-
ning in their study (Tadjbakhsh and Farshad, 1973) [09]. 
Moving toward form-fi nding of arches, Farshad obtained 
different parametric functions for the shape of an optimal 
arch under static loading, defi ning multiple objectives 
(Farshad, 1976) [10]. The objectives in his research 
compromised minimising arch length, arch thrust, and 
volume of the arch material separately. Consequently, 
the shape of the arches with minimum thrust and min-
imum length was found individually when arches were 
of constant cross-section. In the case of arches with a 
variable cross section, the objectives were minimising 
thrust and volume of arch material respectively. Later 
on, Tadjbakhsh obtained the geometry of a moment-
less arch subjected to the SW and the superstructure 
load assuming constant axial stress for arches with vari-
able cross-section (Tadjbakhsh, 1981) [11]. Tadjbakhsh 
showed that the arch shape was independent of the 
magnitude of the loading in the case of uniformly distrib-
uted load. However, the cross-sectional area varied pro-
portional to loading. Following, Serra proposed analytical 
and numerical approximate solutions for the optimal form 
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of funicular arches as a uniformly compressed structure 
(Serra, 1994) [12]. Serra found the shape of the arch 
with variable cross-section subjected to uniform horizon-
tal and vertical loading analytically. It was assumed that 
the height to span ratio is a minimum in the analytical 
solution, while the limit for this ratio was not given. Af-
terwards, Lewis presented mathematical model of the 
two-pin rigid concrete arch with constant cross-section 
(Lewis, 2016) [13]. She applied zero shear force criterion 
to arches when solving equations of equilibrium for any 
arbitrary node on the arch. The validity of the resultant 
formulation was demonstrated by deriving two classical 
momentless arch forms such as; catenary and parabolic 
arch in the case of applying SW only and UDL only load 
condition respectively. The process of fi nding the geom-
etry of this optimal arch shape was coded in MATLAB 
by the author for arches of any L:h ratio and any ratio of 
UDL:SW and listed in the Appendix.  
The shape of the momentless arch was found 
in the literature. But, the applicability of this 
form-fi nd arch shape concerning its defl ec-
tion and fi rst cross-sectional failure has not been
demonstrated. This paper illustrates the advantages of 
form-fi nd arch over the best arch shape when UDL:SW 
>1 which is of a parabolic form, numerically. In this re-
gard, the preference of using the form-fi nd arch is shown 
through comparing its maximum defl ection and fi rst fail-
ure of the arch cross-section with those for the parabol-
ic arch when L:h ratio is 3. The geometry difference of 
parabolic and form-fi nd arch was found to be negligible 
in practical terms, see Table A. However, the defl ection 
pattern of them differs signifi cantly with the twice greater 
maximum vertical displacement for parabolic arch. More-
over, form-fi nd arch could carry 5% greater load before 
reaching the fi rst cross-sectional failure compared to its 
parabolic rival.

OPTIMALITY CRITERION OF FORM-FIND ARCH 

Small changes in the shape of arches have an extensive 
effect on structural response (Pournaghshband, 2016) 
[01]. One of the most dominant structural action effects 
in arches is bending moment, and decreasing its mag-
nitude leads to a smaller stress distribution, defl ection 
and shear forces. By reducing the bending moment, an 
arch can resist loading by developing mostly compres-
sive forces. Since arch structures are diagnosed as com-
pressive ones, momentless arch form is considered as 
the optimal form in this study. Furthermore, in theory, a 
parabolic arch is momentless if it is subjected to UDL 
only and the SW is ignored, while a catenary arch is con-
sidered as momentless once subjected to SW only (Mil-
lais, 2005) [05]. As stated earlier, parabolic and catenary 
arches for separately UDL only and SW only load condi-
tions are momentless and optimal forms. For any other 
loading conditions, the existence of bending moments is 
inevitable for known shape of arches. However, obtain-
ing an optimal form for each probable load case is not 
feasible, momentless arches could be derived by using 

a form-fi nding technique for different ratios of UDL:SW. 
The derived optimal arch shape using form-fi nding ap-
proach is called form-fi nd arch here.

PROJECT DESCRIPTION

To compare the structural response of the form-fi nd arch 
with known shapes of arches, a concrete arch bridge is 
chosen and analysed. The analysis is carried out for a 
hypothetical bridge with some of the basic dimensions 
that are taken from a concrete arch-bridge traffi c over-
pass in Daugavpils in Latvia (Taurenis et al, 2013) [14]. 
This bridge is a carriageway with a parabolic shape and 
was constructed in 2011 to improve the transportation in-
frastructure. The span of the arch (L) is 60 m and to have 
a more pronounced difference between the geometries 
of the parabolic and the form-fi nd arch, the L:h ratio is 
assumed to be equal to 3, e.g., the height of the arch 
(h) is 20 m. It is assumed that the bridge is of a two-pin 
arch with a constant cross-section (depth of 0.65 m) be-
ing suffi ciently rigid. The arch bridge is made of C50/60 
concrete with a covering of asphalt concrete for both 
carriageway and sidewalks. The specifi c weights of steel 
and concrete are taken as 78 and 25 kN/m3, respectively. 
The general shape of the arch is given in Figure 1. 
It is seen in Figure 1 that the deck is linked to the arch 
rib with the support of piers (vertical members). To avoid 
large bending moments, the vertical members are as-
sumed to be fl exible. For this reason, to have enough 
fl exibility in the longitudinal direction, the piers are 
linked to the deck and arch rib using hinge connections. 
The loading confi guration is estimated based on 
EN1991-2: 2003 for a highway bridge in a harsh urban 
environment. According to EN1990: 2000, the factored 
weight of the arch (SW) is calculated equal to 110.1 
kN/m. The accumulated loads applied from the weight 
of the deck and piers with the load from traffi c pass-
ing over the deck are estimated as a total UDL of 507 
kN/m applied to the arches in this study. Consequent-
ly, the ratio of UDL:SW is 4.6 and the behaviour of the 
best known shape of arch, that is, a parabolic arch, is 
compared with the form-fi nd arch for this loading con-
fi guration. Followed by, the x and y coordinates for the 
parabolic arch are obtained using the arch governing 
equation, , setting the left arch sup-
port as its origin and the arch crown passes through (L/2, 
h). The parabolic arch is then analysed with SAP 2000, 
where the arch is modelled using straight elements such 
as beams using this FE analysis software. To fi nd the re-
quired number of nodes for modelling the arch bridge, a 
sensitivity analysis is carried out for the maximum bend-
ing moment of the arch with the described specifi cation. 
The results of the maximum bending moment when 
parabolic arch is modelled with number of nodes in-
volving: 33, 43, 53, 63, 73, 83, 93, 103, 113, and 123 
shows that the percentage difference between the 
maximum sagging bending moments of the arch 
modelled with 63 and 33 nodes is 12%. The per-
centage difference between the maximum sagging 
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Figure 1: Shape of the studied arch bridge

bending moments of the arch modelled with 
63 and 103 nodes decreased to 2.88%. Then, increas-
ing the number of nodes from 103 to 113 nodes caused 
the maximum sagging bending moment to decrease by 
0.47%, which can be considered negligible. Therefore, 
the trend of the change in maximum bending moment 
becomes roughly a straight horizontal line when the arch 
is modelled with more than 103 nodes. Here, 103 nodes 
or 102 straight elements are chosen to model the arches.
The coordinates for the form-fi nd arch is derived from the 
MATLAB fi le listed in the Appendix. Consequentlythe, the 
coordinates of parabolic and form-fi nd arch for the half 
span (n denotes the node number for half of arch span 
and is equal to 52) are given in Table A in the Appendix. 
It is seen from Table A that the maximum differences in 
the geometry of parabolic and form-fi nd arch are related 
to a node with about 7% and 5% difference in the x and 
y coordinates respectively. Although the differences be-
tween the geometry of these arches are insignifi cant in 
practice, the theoretical precision is of importance when 
analysing arch behaviour. Thus, the structural response of 
the form-fi nd arch is assessed against parabolic one with 
difference in their shapes less than 10%. 

COMPARING THE DEFLECTION 
OF THE PARABOLIC AND FORM-FIND ARCH

To compare the defl ection of the parabolic arch 
with that of the form-fi nd one, it is assumed that 
both arches are of the same material and have sim-
ilar general properties. Both arches are subjected to 
the general combination of UDL = 507 kN/m plus SW. 
The self-weight of the two arches are assumed to be the 
same and equal to 110.1 kN/m. Then the parabolic and 
form-fi nd arches are modelled in SAP 2000. The defl ec-
tions of the parabolic and form-fi nd arches are shown in 
Figure 2.
The thin line represents the original shape of the arch 

and thick line is for the deformed shape. It can be seen 
that the form-fi nd arch deforms vertically and maintains 
its original geometric shape under the applied load. The 
maximum displacement of form-fi nd arch is seen at its 
crown equal to - 8 mm. However, parabolic arch deforms 
noticeably with the maximum displacements equal to - 
15 mm at both sides of the arch. The maximum vertical 
displacement of the form-fi nd arch is about half of that of 
the parabolic one. In order to have the same vertical dis-
placement with the form-fi nd and the parabolic arches, 
the thickness of the cross-section of the form-fi nd arch is 
decreased gradually. The required thickness is that when 
the maximum displacement in the z direction reaches - 
15 mm is chosen. Table 1 reports the vertical displace-
ments (u) for form-fi nd arch having different thicknesses 
(d) decreased from 0.65 to 0.35 m.

Table 1: Maximum displacements of form-fi nd arch 
obtained from SAP 2000 using different 

arch thicknesses (d)

Arch  thickness(m) u in z direction (mm)

0.65 –  8.205

0.45 – 11.695
0.40 – 13.068
0.35 – 14.785

As can be seen, decreasing the thickness of the 
form-fi nd arch cross-section makes the maximum 
displacement increase. This is in accordance with 
the study carried out over the effect of arch geome-
try on the structural behaviour. (Altunişik et al, 2016) 
[15]. In reality the thickness of the arch should meet 
the minimum limit of arch thickness. Since the form-
fi nd arch is compared with the parabolic option, 
the former thickness can decrease without considering 
design regulations. It is observed that the maximum dis-
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placement in the z direction for the cross-section of the 
form-fi nd arch with a thickness of 0.35 m is close to that 
of the parabolic one with a thickness of 0.65 m. Over-
all, the form-fi nd arch experiences almost 50% less de-
fl ection. To have the same defl ection, the form-fi nd arch 
thickness for a constant rectangular cross-section can 
be approximately half of the thickness in the parabolic 
arch. It should be noted that the parabolic arch has the 
minimum defl ection compared to circular and catenary 
arches for this load case.
The reduction in form-fi nd arch thickness leads 
to the arch mass decrease. The form-fi nd 
arch shape mass is equal to 619 kNs2/m for 
d = 0.65 m. To have a similar maximum vertical displace-
ment, the form-fi nd arch mass is reduced to 334 kNs2/m 
with d = 0.35 m. The mass reduction is important for the 
construction cost and material saving.

COMPARING THE FIRST 
CROSS-SECTIONAL FAILURE OF THE
PARABOLIC AND FORM-FIND ARCH

One of the reasons for searching for an optimized shape 
of the arch is to establish greater resistance. In other 
words, a favourable arch structure is one that carries 
a specifi ed design load case or cases for the minimum 
weight of the construction material. Concerning other ap-
plications of the form-fi nd arch, the fi rst failure of the arch 
section is evaluated with the fi rst failure of the parabol-
ic arch section. The fi rst failure of arch cross-section is 
emerged under ultimate load beyond the initial yield limit.
For the fi rst step of fi nding the failure of these arches, 
the OpenSees program (http://OpenSees.berke-
ley.edu/) was used. OpenSees is an interactive Tool 
Command Language (Tcl) software framework in 
which the commands can be changed at any time 
and performed at the MS-DOS/Unix prompt. This pro-
gram works in parallel with MATLAB as a post-pro-
cessing tool generated by means of Tcl scripting 
language. Each Tcl command is bound with a C++ 
procedure. Therefore, this fi nite element analysis is ex-
ecuted to simulate the response of the arch structure 
to the applied loading. Both parabolic and form-fi nd 
arches are modelled using straight elements, which 
are defi ned as displacement-based beam-column ele-

ments. Since this programme performs as displacement 
control, the displacement increased by 1 mm at the 
crown of the arch. As a result, the required structural re-
sponses are achieved at each displacement increment 
using OpenSees.   
The second step of fi nding the fi rst failure of the arch 
cross-section is accomplished by using an interaction 
curve between the axial forces and bending moments. 
Hence, the obtained axial forces and bending moments 
from OpenSees are plotted. This diagram is plotted for 
each displacement. To do so, a programme was writ-
ten in Excel as “Visual Basic” that only requires a ver-
tical displacement at the arch crown as input and gives 
a diagram of the axial force and bending moment for 
that displacement. The interaction curve of the arch 
cross-section can be plotted based on fi nding some 
points on the curve such as, the points relevant to the 
squash load, decompression, balance, and pure moment 
(EN1992-1-1:2004). These points are calculated using 
dimension, reinforcement, and material properties of 
the cross-section for each arch. The generated inter-
action curve of each arch is then plotted on the same 
diagram of axial force and bending moments. To have 
a safe cross-section, the diagram of axial forces and 
bending moments of the arch must be under the inter-
action curve of the arch cross-section. Therefore, the 
displacement at which the diagram of axial forces and 
bending moments from OpenSees crosses the interac-
tion curve of the cross-section is considered as the fi rst 
failure of the cross-section. The parabolic arch shows 
the fi rst failure of the cross-section when the vertical dis-
placement at the arch crown is 3950 mm; see Figure 3. 
Meanwhile, from Figure 4, the fi rst failure of the cross-sec-
tion of the form-fi nd arch is seen for a vertical displace-
ment of 5200 mm at the arch crown. This shows that 
fi rst failure of form-fi nd arch cross-section is occurred for 
24% higher vertical displacement at arch crown than par-
abolic shape.
The green, purple, and blue straight lines in 
Figures 3 and 4 connect the minimum eccentricity, de-
compression, and nominal balance points to the origin. 
The minimum eccentricity point shows the maximum mo-
ment strength at the maximum axial compression load 
permitted by Eurocode. The decompression point shows 

Figure 2: SAP 2000 - Deformed shape of parabolic arch 
(a) and form-fi nd arch (b) subjected to UDL of 507 kN/m plus SW of 110.1 kN/m
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Figure 3: Comparison of the interaction curve of the 
parabolic arch cross-section and diagram

 of the axial force and bending moment results from 
OpenSees when the vertical displacement

 at the arch crown is 3950 mm

Figure 4: Comparison of the interaction curve of the 
form-fi nd arch cross-section and diagram of axial force 
and bending moment results from OpenSees when the 

vertical displacement at the arch crown is 5200 mm

compression and moment strength at zero strain in the 
tension side reinforcement. The nominal balance point 
presents compression and moment strength at 50% 
strain in the tension side reinforcement. The interaction 
curve crosses the axial force axis at the squash load 
point that gives the axial compression at zero moment. 

The interaction curve also crosses the bending moment 
axis at pure moment point when the axial force is zero. 
Although the interaction curve of the parabolic arch is 
similar to that of the form-fi nd arch, the axial force and 
bending moment diagrams from OpenSees are com-
pletely different for these two arches. According to the 
OpenSees results, the total load that causes fi rst failure 
of the parabolic arch is 211992 kN. First failure of the 
form-fi nd arch is initiated at 221722 kN. Comparing the 
fi rst failures of the parabolic and form-fi nd arches, the 
latter one could carry 5% higher load before reaching the 
fi rst cross-sectional failure. 

CONCLUDING REMARKS

The advantages of using the form-fi nd arch was shown nu-
merically by comparing its defl ection and fi rst cross-sec-
tional failure with those obtained for a parabolic arch in a 
theoretical case study. This exploration was carried out for
UDL:SW  > 1. Since the parabolic arch performed best for 
this load case against catenary or circular arch shape: the 
form-fi nd arch compared to the best-known arch shape. 
The studied arches were considered rigid with constant
cross-section. They were also assumed to be made of 
concrete material which is relatively weak in tension sub-
jected to the same loading for L:h = 3. 
Case study shows that the parabolic arch deformed 
signifi cantly, while the form-fi nd arch kept its geometry. 
The maximum displacement of the parabolic arch to 
be about twice greater that of the maximum displace-
ment of form-fi nd arch for a similar load case. To have 
the same maximum displacement, the thickness of the 
form-fi nd arch could be reduced to half of its initial value. 
This leads to mass reduction in the case of form-fi nd arch 
to about half on its initial mass which affect construction 
cost noticeably.
From case study, form-fi nd arch could car-
ry 5% greater load before reaching the fi rst
cross-sectional failure compared to the parabolic form 
under the same conditions. The form-fi nd arch shows 
this fi rst failure for 24% higher vertical displacement at 
the arch crown compared to the parabolic one. 
Overall, the comparison confi rmed the superiority of us-
ing the form-fi nd arch in practice which demonstrates the 
signifi cant effect of shape on structural response.
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APPENDIX

By choosing a number of required nodes (n) on the half of 
the arch (from left support to the mid span), L:h ratio, and 
loading (w =UDL and q=SW), the x and y of each node 
is given using the listed code below. Also, the shape of 
the half of the arch is plotted in this programme. The bold 
letters indicate the input values. This programme is written 
for any L:h ratio and any ratio of UDL:SW.
n = ; % (number of nodes for half span of the arch)
L = ;
h = ;
r = L/h;
w = UDL;
q = SW;
k = UDL/SW;
if  (k^2) < 1      
A = 3; 
y1 = 0;
x1 = 0;
L = 10;
h = 5;
r = L/h
   for i = 1: 100
   b = A;
   F = y1-h + b*cosh((L/2)/b)-b;
   F1 = cosh((L/2)/b) - (((L/2)*sinh((L/2)/b))/b) -1;
   A = b- (F/F1);
   i = i+1;

if abs(F/F1) < 0.00000000001; 
break
end
end 
   i
format long
A
tmax0 = sinh(L/(2*A))
syms tmax;
Ft = (asinh(tmax)+(k/(1-k^2)^(0.5))*(atan(tmax*k/
((1+tmax^2)^(0.5)*(1-k^2)^(0.5)))-atan(tmax/(1-
k^2)^(0.5))))/((1+tmax^2)^(0.5)-1+k*log((k+1)/(k+(1+t-
max^2)^(0.5))));
options = optimset(‘TolX’,1e-18);
[tmax exitfl ag output] = fzero(@(tmax)eval(r/2-Ft), tmax-
0,options);
tmax
H = (q*h) / (k*log((k+1) / (k + (1 + tmax^2)^(0.5))) + (1 + 
tmax^2) ^ (0.5) - 1) 
for i = 2 : n + 1;    
tsash = tmax / (n)
t0 = tmax 
t(1) = tmax - tsash
t(i) = t(i-1) - tsash
%Then for n number of nodes, n x and y should be found 
for each t…means t0 has x=0 and y=0 from below equa-
tions and t1… 
x(1) = (-H/q)*(asinh(t0)+(k/(1-k^2)^(0.5))*(atan(t0*k/
((1+t0^(2))^(0.5)*(1-k^2)^(0.5)))-atan(t0/
(1-k^2)^(0.5))))+(L/2);
y(1) = (-H / q) * ((1 + t0 ^ (2)) ^ (0.5) - 1 + k * log ((k+1) / 
(k + (1+t0^2) ^ (0.5)))) + h; 
x(i)=(-H/q)*(asinh(t(i-1))+(k/(1-k^2)^(0.5))*(atan(t(i-
1)*k/((1+t(i-1)^(2))^(0.5)*(1-k^2)^(0.5)))-atan(t(i-1)/
(1-k^2)^(0.5))))+(L/2);
y(i)=(-H/q)*((1+t(i-1)^(2))^(0.5)-1+k*log((k+1)/(k+(1+t(i-
1)^2)^(0.5))))+h;
i+1; 
format short 
disp (x)
disp (y)
plot (x,y,’r’) 
end 
else  
     if k^2>1
tmax0=4/r;
syms tmax;
Ft = (asinh(tmax) + (k/(k^2-1)^(0.5)) * (-atanh (tmax * 
k / ((1 +  tmax  ^ 2) ^ (0.5) * (k ^ 2 -1 ) ^ (0.5))) + atanh 
(tmax / (k ^ 2 - 1) ^ (0.5)))) / ((1 + tmax ^ 2) ^ (0.5) - 1 + 
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k * log ((k + 1) / (k + (1 +  tmax ^ 2) ^ (0.5))))
options= optimset(‘TolX’,1e-18);
[tmax exitfl ag output] = fzero (@(tmax)eval(r / 2 - Ft), 
tmax0,options);
tmax
H = (q * h) / (k * log ((k + 1) / (k + (1 + tmax ^ 2) ^ (0.5))) 
+ (1 + tmax ^ 2) ^ (0.5) - 1)
for i = 2 : n + 1;    
tsash = tmax / (n)
t0 = tmax
t(1) = tmax - tsash
t(i) = t(i - 1) - tsash
%Then for n number of nodes, n x and y should be found 
for each t…means t0 has x=0 and y=0 from below equa-
tions and t1…
x(1) = (-H / q) * (asinh (t0) + (k / (k ^ 2 - 1) ^ (0.5)) * ( 
-atanh (t0 * k / ((1 + t0 ^ (2)) ^ (0.5) * (k ^ 2 - 1) ^ (0.5))) + 
atanh (t0 / (k ^ 2 - 1) ^ (0.5)))) + (L / 2);
y(1) = ( -H / q) * ((1 + t0 ^ (2)) ^ (0.5) - 1 + k * log((k + 1) 
/ (k + (1 + t0 ^ 2) ^ (0.5)))) + h; 
x(i) = ( -H / q) * (asinh(t( i - 1)) + (k / (k ^ 2 - 1) ^ (0.5)) * 
( -atanh(t( i-1 ) * k / ((1 + t(i-1) ^ (2)) ^ (0.5) * (k ^ 2-1) ^ 
(0.5))) + atanh(t( i - 1) / (k ^ 2 - 1 ) ^ (0.5)))) + (L / 2);
y(i) = ( -H / q) * ((1 + t(i - 1) ^ (2)) ^ (0.5) - 1 + k * log((k + 
1) / (k + (1 + t(i - 1) ^ 2) ^ (0.5)))) + h; 
i+1; 
format short 
disp(x)
disp(y)
plot(x,y,’b’) 
end
      else
             %if (k^2)=1 
tmax0 = 4 / r;
syms tmax;
Ft = ((1 / tmax) * ((1 + tmax ^ 2) ^ (0.5) - tmax * asinh(t-
max) -1)) / (1 - (1 + tmax ^ 2) ^ (0.5) + log((1 + (1 + tmax 
^ 2) ^ (0.5)) / 2))
options= optimset(‘TolX’,1e-18);
[tmax exitfl ag output] = fzero(@(tmax)eval(r / 2 - Ft), 
tmax0,options);
tmax
H=(q*h)/(-log((1+(1+tmax^2)^(0.5))/2) + (1 + tmax ^ 2) ^ 
(0.5) - 1)
for i = 2 : n;    
tsash = tmax / (n)
t0 = tmax
t(1) = tmax - tsash
t(i) = t(i - 1) - tsash
%Then for n number of nodes, n x and y should be found 

for each t…means t0 has x=0 and y=0 from below equa-
tions and t1…
x(1) = (H / q) * ((1 / t0) * ((1 + t0 ^ 2) ^ (0.5) - t0 * asinh(t0) 
- 1)) + (L / 2);
y(1) = (H / q) * (log((1 + (1 + t0 ^ 2) ^ (0.5)) / 2) + 1 -  (1 
+ t0 ^ 2) ^ (0.5)) + h; 
x(i) = (H / q) * ((1 / t(i -1)) * ((1 + t(i - 1) ^ 2) ^ (0.5) - t(i - 1) 
* asinh(t(i - 1)) - 1)) + (L / 2);
y(i) = (H / q) * (log((1 + (1 + t(i - 1) ^ 2) ^ (0.5)) / 2) + 1 - (1 
+ t(i - 1) ^ 2) ^ (0.5)) + h; 
i+1;
format short 
disp(x)
disp(y)
plot(x,y,’g’) 
end
                  end
       end
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Table A: Coordinates of parabolic and form-fi nd arch for the half span

n
Parabolic arch

  x(m)             y(m)
Form-fi nd arch

 x(m)           y(m)
n

Parabolic arch
  x(m)          y(m)

Form-fi nd arch
 x(m)           y(m)

1 0.00 0.00 0.00 0.00 27 15.29 15.19 14.83 14.97
2 0.59 0.78 0.55 0.74 28 15.88 15.57 15.43 15.36
3 1.18 1.54 1.10 1.46 29 16.47 15.93 16.02 15.73
4 1.76 2.28 1.65 2.18 30 17.06 16.28 16.62 16.09
5 2.35 3.01 2.20 2.88 31 17.65 16.61 17.22 16.43
6 2.94 3.73 2.76 3.57 32 18.24 16.92 17.82 16.76
7 3.53 4.43 3.32 4.25 33 18.82 17.22 18.42 17.07
8 4.12 5.11 3.87 4.91 34 19.41 17.51 19.02 17.37
9 4.71 5.78 4.43 5.56 35 20.00 17.78 19.62 17.65

10 5.29 6.44 5.00 6.20 36 20.59 18.03 20.23 17.92
11 5.88 7.07 5.56 6.82 37 21.18 18.27 20.83 18.17
12 6.47 7.70 6.13 7.44 38 21.76 18.49 21.44 18.40
13 7.06 8.30 6.70 8.03 39 22.35 18.70 22.04 18.62
14 7.65 8.90 7.27 8.62 40 22.94 18.89 22.65 18.83
15 8.24 9.47 7.84 9.19 41 23.53 19.07 23.26 19.01
16 8.82 10.03 8.41 9.75 42 24.12 19.23 23.87 19.18
17 9.41 10.58 8.99 10.30 43 24.71 19.38 24.48 19.34
18 10.00 11.11 9.56 10.83 44 25.29 19.51 25.09 19.48
19 10.59 11.63 10.14 11.34 45 25.88 19.62 25.71 19.60
20 11.18 12.13 10.72 11.85 46 26.47 19.72 26.32 19.71
21 11.76 12.61 11.31 12.34 47 27.06 19.81 26.93 19.80
22 12.35 13.08 11.89 12.81 48 27.65 19.88 27.54 19.87
23 12.94 13.53 12.48 13.27 49 28.24 19.93 28.16 19.93
24 13.53 13.97 13.06 13.72 50 28.82 19.97 28.77 19.97
25 14.12 14.39 13.65 14.15 51 29.41 19.99 29.39 19.99
26 14.71 14.80 14.24 14.57 52 30 20 30 20

Paper submitted: 21.02.2017.
Paper accepted 10.04.2017.

This is an open access article distributed under the 
CC BY-NC-ND 4.0 terms and conditions.

Asal Pournaghshband - Contribution of a form-fi nd shape  of pin-ended arch


