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Left-sided truncated distributions (LSTD) have been found in different situations in the industry. For example, the life 
distribution of used devices is left-sided truncated distribution. Moreover, if a lower specification exists without the up-
per specification limit, the product distribution is truncated from the left side. Left-sided truncated normal distributions 
(LSTND) is a special case where the original distribution is normal. LSTND characteristics, as well as cumulative den-
sities and probabilities can be difficult to employ manually, with most practitioners relying largely on specialized (and 
expensive) software. In many cases, practitioners are against purchasing software, as they are often limited in the 
number of estimations. The paper will provide an accurate and straightforward approximation to the cumulative density 
of LSTND. Hart’s normal distribution is simplified and used as a foundation of this model. The maximum absolute error 
for the curve at different truncation points (i.e., ZL) over the definition range (i.e., [zL: ∞]) is as follows: 0.004303 for 
ZL=-4, 0.00432 for ZL=-3, 0.00449 for ZL=-2, 0.005727 for ZL=-1, and 0.0106 for ZL=0. Even the maximum errors are 
very ignorable in probability applications. Further, it is rare to find a truncation point of higher than -2 in the industry. 
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INTRODUCTION

Truncated normal distributions are a crucial function in 
the field of statistics and probability. Specifically, the use 
of screening or thresholding outputs from a dataset from 
the left side of a normal distribution requires the Left-Sid-
ed Truncated Normal Distribution (LSTND) function. The 
examples from the industry on the use of the LSTND 
function are plentiful. In manufacturing, if the acceptable 
product performance must be higher than a certain val-
ue, for example, thin-film roughness of produced fuel 
cells must be greater than 0.01 mm, then the variations 
in acceptable data of roughness is truncated on the left 
side of the normal distribution. The level (0.01) in this 
case is called a lower specification limit (LSL).
Donald Wheeler, in his book Understanding Industrial 
Experimentation, Second Ed. (SPC Press, 1992) intro-
duced the specification limits. He said “The traditional 
approach to the problem of product variation has been 
that of specifications.” [1] Further, manufacturers have 
hoped to use specification limits to narrow variations in 
a process’s target performance. Such targets (say, tar-
get +/- Δy) place acceptable bounds to narrow the gaps 
in the product's performance. The product is considered 
satisfactory when the quality characteristics Y falls within 
the specificed limits. The product is considered unsat-
isfactory if the value for Y falls outside the limits. In this 
case, certain actions have to be taken to rectify the situa-
tion. Although these limits are manufactured boundaries, 
they are being used to make despotic decisions related 
to the performance and quality of the products. Put in 

another way, specification limits are credulity efforts that 
were created to deal with the products’ characteristics 
variation challenges, and problems. In addition, these 
boundaries are being used to categorize the products 
into ‘good/acceptable’ or ‘bad/unacceptable’ products.
Usually, in large-scale flexible manufacturing, nobody 
considers the distribution after screening the bad prod-
ucts as a left-sided truncated distribution, as the percent-
age of the screened products is very negligible. Further-
more, the percentage of the unacceptable parts in some 
cases reaches 3.4 ppm and indeed the methodology 
of six sigma is developed based on this percentage. 
However, the accuracy in the manufacturing mentioned 
above is not real for many products, as many of them 
are subjected to high variation. In the industry of solar 
cells, for example, the efficiency of the manufacturing 
cells varies a lot, with up to 10% of the cells removed 
for scrap material. In the manufacturing of jewelry, the 
product variation is high, as well. In general, a significant 
portion of hand made products are removed for rework 
or scrap.
Besides the usage of truncated distribution in manufac-
turing and quality engineering [2], it is involved in many 
other applications, such as the following fields: lifetime 
studies (e.g., [3-4]), economics (e.g., [5-8]) and water 
resources (e.g., [9]). The following are further examples 
of truncated normal distribution usage in research: Caoa 
et al. [10] used truncated distribution to address vehicle 
transportation on roads. Kantar and Usta [11] applied 
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the right-sided truncated Weibull distribution to assess 
their simulated wind speed model. Horrace [7] Use the 
recursive the moment formula to study the moments of 
truncated (below zero) normal distribution. Liquet and 
Nazarathy [12] used an ordinary differential equation 
(ODE) to study the moment that fits truncated univariate 
distributions. Hoffmann and Vetter [13] compared both 
the normal truncated empirical distribution and the func-
tion of L´evy  to the Gaussian process, and they found 
a weak convergence between these two cases. Final-
ly, Sakaguchi et al. [14], in studying textile applications, 
used a truncated distribution to estimate tsumugi width.

Left-sided Truncated Normal Distribution (LSTND)

Assuming the variations caused by dependent variables 
are distributed normally, the variations of good products 
(after trimming values below lower specification limit) de-
pict the LSTND.
In this case, the normal density function increases to ap-
propriately scale with the truncated area to the left, keep-
ing the area under the density at 1, see Figure 1.
The normal distribution is arguably the most important as 
well as a popular probability distribution. There are two 
main reasons why this distribution has such an impact 
on all fields of probability and statistics (e.g., reliability, 
quality control, management, etc.), as follows: 
1. The distribution of independent trials or quantities

is normal. The measurement of errors is an exam-
ple of these independent trials. The binomial is the
discrete version of independent trails distribution. As
the number of trials increases to infinity, the binomial
distribution becomes closer and closer to the normal
distribution.

2. The distribution of means of different samples taken
from the same population is approximately normal,
according to the Central Limit Theorem (CTL).

The normal distribution has a symmetric bell shape 
about the center of the distribution, the mean. Besides 
the mean, the normal distribution is defined into another 
parameter, which is the variance. Variance measures the 
extent to which the squared deviation of a random vari-
able is spread out from its mean. The probability density 

Figure 1: LSTND
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function is presented in the following equation.
(x-μ)-

σf(x) = e
σ π

2

221
2

(1)

In Equation (1), μ represents the mean, and σ represents 
the standard deviation. Equation (2) describes the stan-
dard normal distribution where the mean is equal to 0, and 
the standard deviation is equal to 1. Please note that ∅ 
(x) in Equation (2) is corresponding to f(x) in Equation (1).

z

(z) = 
π

e
−

∅
2

21
2

Equation (3) Is a transformation formula and can be used 
to transform the normal distribution of any μ and σ to a 
standard normal distribution. It is used to find the corre-
sponding z-score on the standard normal distribution to 
x value on the concerning normal distribution.

z = (x-μ)/σ

(2)

(3)

The cumulative density function, F(x), refers to the prob-
ability that the random variable, X is equal or less than an 
observed value, x, that is:
F(x) = P(X x)≤ (4)
So we know several things: that F(x) is bounded below 
by 0, and bounded above by 1 (because it doesn't make 
sense to have a probability outside [0:1]) and that it has 
to be increasing (or at least, non-decreasing) with x. 
Equations (5) and (6) refer to the cumulative mass func-
tion of both the normal and standard normal distributions 
respectively.

( )t-μ
x σ

-
F(x) = e dt

σ π

−

∞∫
2

221
2

(5)

/z -t

-
Φ(z) = e dt

π ∞∫
2 21

2
In the standard normal distribution case, Ф represents 
the cumulative mass function. Note, a cumulative nor-
mal mass function cannot be solved manually, as it is 
highly complex. However, the statisticians developed a 
specialized table called z-table to be used manually. The 
standard normal distribution values for the cumulative 
mass function in the z tables are addressed. The trans-
formation formula can handle the non-standard normal 
distribution with the z-table after finding the correspond-
ing z-score.
In the case of left-sided truncated distributions, the distri-
bution function domain changes to be [xL: ∞]. Equations  
(7) and (8) illustrate this new density function for both 
normal and standard normal distributions respectively. 
These functions are found by dividing the original densi-
ty function by the area within the specified range under 
the curve [xL: ∞].

(6)

,

L

T L

x

f(x)f (x) = x <x
f(x)dx

∞

∫
(7)

1050
       Istraživanja i projektovanja za privredu ISSN 1451-4117 
Journal of Applied Engineering Science Vol. 19, No. 4, 2021



Mohammad Hamasha, et al. - A mathematical approximation to left-sided 
truncated normal distribution based on Hart's model

,

L

T L
(z)(z) = z <z

(z)
z

∞

∅
∅
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(8)

Equation (9) and Equation (10) illustrate the cumulative 
mass function of LSTNDs for both the normal and the 
standard normal distributions respectively.

L

L

x
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x

f(t)F (x)= dt  x <x
f(t)dt
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∫

(9)

L

L

T L
(t)Φ (x)= dt  z <z
(t)dt
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z

z

∞

∅

∅
∫
∫

(10)

Practitioners addressing cases with LSTNDs consis-
tently use specialized software (e.g., R) or specially de-
signed programs. There is an effort to tabulate the values 
of cumulative normal distribution function by Khasawneh 
et al. [2]. However, the resolution of the z-score of this 
table is high (0.1). This level is high if you compare it to 
the resolution of the original z-table (i.e., 0.001). Besides 
the resolution concern, the table is not popular and not 
accessible publically.  Evaluating a normal distribution is 
much easier than evaluating an LSTND for three rea-
sons: 1) There are statistical tables for the cumulative 
distribution function to a very fine resolution, and the ta-
ble is popular and available to everybody, 2) The values 
of the cumulative distribution function are inherently de-
fined in Excel spreadsheet, statistical software, program-
ming languages, etc., and 3) Various works in mathemat-
ics such as  Cadwell [15], Polya [16], Lin [17], Hart [18], 
Hoyt [19], Hamaker [20], Lin [21], Lin [22], Aludaat and 
Alodat [23]. Bowling et al. [24] provide relatively accurate 
and straightforward mathematical approximations to the 
cumulative normal mass function. However, literature is 
limited regarding studies that demonstrate approximat-
ing the LSTNDs, with only two approximating models 
identified by this study. In sharp contrast, neither of these 
works provided a relatively accurate and straightforward 
model.

PROPOSED MODEL

This paper introduces two LSTND mathematical ap-
proximations that are both straightforward and accurate. 
The approximation was developed based on Hart’s two 
models of the normal distribution, approximations to the 
cumulative normal mass function [25-26]. In subsection 
Some notes on Hart’s approximations, two introduced 
models by Hart are presented and further discussed in 
terms of the applicability, simplicity, and accuracy. Sub-
section The introduced model. introduces the approxi-
mation to the cumulative mass of LSTND.

Some notes on Hart’s approximations

Two approximations were introduced by Hart to demon-
strate the cumulative normal distribution function over 
the positive z-score domain. The first one introduced 
in 1957 and the second one introduced in 1966, as ad-
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where

Although both models are developed for the positive 
z-score region, we can estimate the approximation in the 
negative z-score using the fact, Ф(-z)=1-Ф(z). Also, we 
can write the equations in term of the cumulative normal 
distribution function, Ф(z) instead of its complement us-
ing the fact, Ф̅(z)=1-Ф(z). Equation (13) represents Hart 
(1) approximation to Ф(z) over the domain [-∞: ∞] and 
Equation (14) represents Hart (2) approximation to the 
same distribution over the same domain.

where

At z=0, Ф(z) can be estimated using the upper or the low-
er part of Equation (13) or Equation (14), as the result of 
any is 0.5. Hart’s (1) model is very simple while Hart’s (2) 
model is more complicated. According to the criteria of 
simplicity, Hart’s (1) model is recommended to be used 
for building our model in this paper. In order to decide 
which model to use, the accuracy of both models must 
be measured. The models’ accuracy was assessed with 
a measure of the deviation between the model results 
from the true results over the entire z-score domain. We 
are specifically interested in the maximum deviation.
The result of both models results nearly approximate to 
the true results leading to a negligible error (0.0000317 
at z=-4 and  z=4). Furthermore, the model results of both 
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Figure 2: Model deviation from the true results of  
cumulative mass function over the range Z∈[-4: 4]
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models are approaching 0, as z approaching negative 
infinity, and approaching 1, as the z approaching nega-
tive infinity. See Equations 15-18. Equations 15-16 are 
for Hart (1957) model and Equations 17-18 are for Hart 
(2) model.

From the previous discussion, we conclude that no need 
to investigate the deviation over the regions, z>4 and 
z<-4. Figure 2 shows the deviation of the two models 
over the range [-4: 4]. The maximum absolute deviation 
(error) is 0.0043 for Hart (1) while it is 0.01282 for Hart 
(2) model. It is clearly noticeable that the accuracy of the 
Hart’s (1) model is much higher, besides its simplicity.

The introduced model

In the previous subsection, we concluded that Hart (1) 
model is more simple and accurate than Hart (2) model. 
Therefore, the LSTND introduced in this paper is built 
based on thw Hart’s (1) model. As a first step, we need 
to estimate the probability density function, ∅(z) of the 
Hart’s (1) model. Specifically, we have to derive Equation 
(13) with respect to z-score, as stated in Equation (18). 
The result of derivation is addressed in Equation (19).

Substituting Equation (19) in Equation (8) allows us to 
find the probability density function  ∅T (z) of the LSTND

The approximation to the cumulative mass funcation of 
LSTND can be estimated by integrating the equation 20 
over the [zL: z], as expressed in Equation (21). The ap-
proximation is addressed in Equation (22).

INDUSTRY APPLICATIONS (QUALITY ENGINEERING)

The model presented in equation (22) can be applied to 
different situations in the industry in order to estimate the 
cumulative probability of truncated normal distribution 
and the associated statistics with this distribution. Out 
of all areas, we have selected quality engineering to ex-
plain the model application. The main aim of quality en-
gineering is to achieve a good and affordable design and 
management control assurance of quality performance 
of an organization’s products and processes. The selec-
tion of quality engineering is because all distribution after 
a screening of unfit products/parts is truncated distribu-
tions. In detail, we defined two values (i.e., LSL and USL) 
that refer to the critical values between which products or 
services should operate. Customer requirements usually 
set these critical values.
For example, the total power of x-ray used in security 
screening of luggage must be tighter to a certain value. 
In this case, the two-sided limits mean the target is in the 
middle between LSL and USL. In addition, the parame-
ters with lower-is-better have only USL, these include ex-
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Figure 3: 3D surface response of error with z-score and 
truncation point
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amples such as defects or defect densities, weight, de-
lays in time, costs, and power consumption. The target 
in this situation could be a specified low value that would 
represent a value considered desirable for the custom-
ers, or it could be a general value such as half of the 
maximum specification limit. Similarly, a higher-is-better 
critical parameter will have the minimum specification 
limit LSL, including examples such as efficiency, drops-
to-failure, mean-time-to-failure (MTTF), device life, and 
resolution.
Our model is valid to be applied to the third case where 
only a minimum specification limit exists. Assume for ex-
ample, if the purity of 0.018 mm thickness of aluminum 
foil follows a normal distribution. The purity is a critical 
parameter that affects the foil ductility. The acceptable 
purity limit for this thickness is 0.99 (i.e., the lower specifi-
cation limit). Assume a quality engineer looks to estimate 
the chance to have a purer foil than 0.993 after discard-
ing the unfit foils, with the following parameters: μ=0.992 
and =0.0005. The first step is to use the transformation 
formula to determine zL, and z, as follows: zL=(0.99-
0.992)/0.0005=-4 and z=(0.993-0.99)/0.0005=2. By 
using equation (22), the problem requirement can be 
estimated as follows: 1-ΦT=-3 (2)=0.022883. This val-
ue nearly approximates the true value (i.e., 0.022751), 
and the deviation of the model result from the true val-
ue is only 0.00013. In the next section, we will discuss 
the model accuracy in terms of results deviation from the 
true results with z and zL.

ANALYSIS OF ACCURACY

In this section, details on model error level with z and zL 
are discussed. We defined the model error as the devia-
tion of the model results from the true results. Figure 3 rep-
resents the 3-D surface response of error with two factors, 
z and zL. It is noteworthy that the current study’s model er-
ror tends to be a minimum and moving far from the mean.  
For example, the model error is almost zero at z equals -5 
and z=5 regardless of the truncation point's value.
For more clarification, Figure 4 presents the model er-
ror versus z-score over the domain [zL: 4] for four dif-
ferent truncation points (i.e., zL= -4, -3, -2, -1, and 0). 
We can clearly notice that there is a peak in the positive 
z-score range and another peak in the negative z-score. 
For zL=0, the peak in the negative z-score region is trun-
cated with the truncation region. The maximum absolute 
error is depicted by the peak for that truncation point. 
The maximum deviation for at different zL are as follows: 
for zL=-4 is  0.004303,  for zL=-3 is  0.00432,  for zL=-2 is  
0.00449,  for zL=-1 is  0.00573,  and for zL=-0 is  0.0106.
Overall, the maximum deviation increases with zL. For 
example, the maximum absolute error at zL=0 is about 
4 folds of the maximum absolute error at zL=-4. In this 
paper, the maximum truncation point is zL=0, as it is rare 
to find an application with a truncated area of more than 
half of the original area. Even though, the error at zL=0 is 
still very ignorable for most probability and statistics ap-

plications including quality engineering. The accuracy of 
the logistic-based approximation (similar purpose model) 
is over 0.02 and the author claims that nobody can feel 
the difference in most of the industrial applications.
Figure 5 represents the relationship between the maxi-
mum absolute error and zL. The increase becomes rapid 
as the zL increases, or in another word, the curve is con-
cave up.
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CONCLUSION

In many situations, quality engineers are forced to deal 
with the LSTND. Handling these kinds of distributions 
cannot be done manually and engineers usually use 
specified programs or software. But, using these pro-
grams/software is not practical in all cases. In many cas-
es, an engineer needs to do some of his/her calculations 
based on this distribution for one of few times. This paper 
introduces a mathematical approximation that allows en-
gineers to manually calculate the estimates of left-sided 
truncated normal and standard normal distribution using 
the probability density distribution and the cumulative 
normal distribution. The model is relatively straightfor-
ward and able used with a simple hand calculator, how-
ever, the study recommends using an excel spreadsheet 
to better account for clerical error. The results from the 
model are accurate and appropriate for industrial appli-
cations, with a maximum deviation of 0.0106 over the 
region [zL: ∞] for any zL ∈[-4:0]. The model is ultimately 
recommended to be used by engineers in order to re-
duce their computational time, as well as the need for 
expensive statistical software in studying large-scale 
flexible manufacturing.
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