
JAES

ISTRAŽIVANJA I PROJEKTOVANJA ZA PRIVREDU

www.engineeringscience.rsJOURNAL OF APPLIED ENGINEERING SCIENCE

Indexed by
FIXED-BUDGET APPROXIMATION OF THE INVERSE 
KERNEL MATRIX FOR IDENTIFICATION OF NONLIEAR 
DYNAMIC PROCESSES

Nikita Antropov
Reshetnev Siberian State 
University of Science and 
Technology, Institute of 
Computer Science and            
Telecommunications,                   
Department of Systems 
Analysis and Operations           
Research, Krasnoyarsk, 
Russian Federation 

Online aceess of full paper is available at: www.engineeringscience.rs/browse-issues

Cite article:

Key words: kernel methods, nonlinear process, identification, low-rank approximation,               
computational efficiency
doi:10.5937/jaes0-31772              

Antropov N., Agafonov E., Tynchenko V., Bukhtoyarov V., Kukartsev V.                                          
(2022) FIXED-BUDGET APPROXIMATION OF THE INVERSE KERNEL MATRIX FOR
IDENTIFICATION OF NONLINEAR DYNAMIC PROCESSES, Journal of Applied Engineering 
Science, 20(1), 150 - 159, DOI:10.5937/ jaes0-31772 

Evgeny Agafonov
Reshetnev Siberian State 
University of Science and 
Technology, Institute of 
Computer Science and            
Telecommunications,                   
Department of Systems 
Analysis and Operations           
Research, Krasnoyarsk, 
Russian Federation 

Siberian Federal University, 
School of Petroleum and    
Natural Gas Engineering, 
Department of Fuel Supply
and Combustibles,           
Krasnoyarsk, Russian       
Federation 

Vadim Tynchenko
Siberian Federal University, 
School of Petroleum and 
Natural Gas Engineering, 
Department of
Technological Machines 
and Equipment of Oil and 
Gas Complex, Krasnoyarsk,  
Russian Federation 

Reshetnev Siberian State 
University of Science and 
Technology, Institute of    
Computer Science and
Telecommunications,            
Information-Control Systems     
Department, Krasnoyarsk, 
Russian Federation

Vladimir Bukhtoyarov
Siberian Federal University, 
School of Petroleum and 
Natural Gas Engineering, 
Department of
Technological Machines 
and Equipment of Oil and 
Gas Complex, Krasnoyarsk,  
Russian Federation 

Reshetnev Siberian State 
University of Science and 
Technology, Institute of    
Computer Science and
Telecommunications, 
Department of Information     
Technology
Security, Krasnoyarsk,                     
Russian  Federation

Vladislav Kukartsev
Siberian Federal University, Institute of 
Space and Information Technologies, 
Department of Computer Science,    
Krasnoyarsk, Russian Federation

Reshetnev Siberian State University of 
Science and Technology, Engineering 
and Economics Institute,
Department of Information
Economic Systems, Krasnoyarsk,      
Russian Federation



Istraživanja i projektovanja za privredu
Journal of Applied Engineering ScienceOriginal Scientific Paper

doi:10.5937/jaes0-31772 Paper number: 20(2022)1, 915, 150-159

FIXED-BUDGET APPROXIMATION OF THE INVERSE     
KERNEL MATRIX FOR IDENTIFICATION OF NONLINEAR        

DYNAMIC PROCESSES
Nikita Antropov1, Evgeny Agafonov1,2, Vadim Tynchenko3,4*, Vladimir Bukhtoyarov3,5, Vladislav Kukartsev6,7

1Reshetnev Siberian State University of Science and Technology, Institute of Computer Science and     
Telecommunications, Department of Systems Analysis and Operations Research, Krasnoyarsk, Russian 
Federation
2Siberian Federal University, School of Petroleum and Natural Gas Engineering, Department of Fuel Supply 
and Combustibles, Krasnoyarsk, Russian Federation
3Siberian Federal University, School of Petroleum and Natural Gas Engineering, Department of              
Technological Machines and Equipment of Oil and Gas Complex, Krasnoyarsk, Russian Federation
4Reshetnev Siberian State University of Science and Technology, Institute of Computer Science and      
Telecommunications, Information-Control Systems Department, Krasnoyarsk, Russian Federation
5Reshetnev Siberian State University of Science and Technology, Institute of Computer Science and     
Telecommunications, Department of Information Technology Security, Krasnoyarsk, Russian Federation
6Siberian Federal University, Institute of Space and Information Technologies, Department of Computer 
Science, Krasnoyarsk, Russian Federation
7Reshetnev Siberian State University of Science and Technology, Engineering and Economics Institute, 
Department of Information Economic Systems, Krasnoyarsk, Russian Federation

The paper considers the identification of nonlinear dynamic processes using kernel algorithms. Kernel algorithms 
rely on a nonlinear transformation of the input data points into a high-dimensional space that allows solving nonlinear 
problems through the construction of kernelized counterparts of linear methods by replacing the inner products with 
kernels. A key feature of the kernel algorithms is high complexity of the inverse kernel matrix calculation. Nowadays, 
there are two approaches to this problem. The first one is based on using a reduced training data sample instead of 
a full one. In case of kernel methods, this approach could cause model misspecification, since kernel methods are 
directly based on training data. The second one is based on the reduced-rank approximations of the kernel matrix. A 
major limitation of this approach is that the rank of the approximation is either unknown until approximation is done 
or it is predefined by the user, both of which are not efficient enough. In this paper, we propose a new regularized 
kernel least squares algorithm based on the fixed-budget approximation of the kernel matrix. The proposed algorithm 
allows regulating the computational burden of the identification algorithm and obtaining the least approximation er-
ror. We have shown some simulations results illustrating the efficiency of the proposed algorithm compared to other 
algorithms. The application of the proposed algorithm is considered on the identification problem of the input and 
output pressure of the pump station. 

Key words: kernel methods, nonlinear process, identification, low-rank approximation, computational efficiency
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INTRODUCTION

Most of the identification methods are based on linear 
models since their properties and limits are well-known 
and established. At the same time, quite often one has to 
deal with nonlinear processes that cannot be identified 
by linear methods. As a result, over the past decades 
there have been proposed many identification algorithms 
for nonlinear processes, for example, algorithms based 
on neural network modeling [1], fuzzy logic [2], and ker-
nel methods [3]. Nowadays kernel-based methods [4-7] 
have become most widely used among identification 
methods since they allow solving nonlinear identification 
problems using linear algorithms without any assump-
tions about the model structure. Kernel methods rely on 
the so-called kernel trick [8]. Roughly speaking, the ker-
nel trick is based on replacing the inner products in the 

original linear algorithms with kernels, which calculate 
the distances between input data points in a high-dimen-
sional Hilbert space [9]. This procedure is also known 
as metric kernelization. The key feature of kernelization 
is that nonlinear functions are most likely to be linear in 
a high-dimensional space. The shortcoming of this pro-
cedure is an increase of the problem dimension, which 
becomes dependent on the training sample size. As a 
result, the solution of identification problems using kernel 
methods is associated with considerable computational 
difficulties, basically related to the inversion of large ma-
trices, which requires O(N3) floating points operations, 
where N is the number of the training points. There are 
two approaches to decreasing the computational bur-
den of the kernel-based methods. The first approach is 
based on using a reduced training data sample instead 
of a full one. A reduced training data sample is often 
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called an active set of training points. Points in the active 
training set could be either selected randomly or greed-
ily w.r.t. some criterion [10-12]. When using the active 
training set of size M, kernel algorithms require O(M3) 
operations, which is computationally more efficient, but 
in practice this approach has some drawbacks. Partic-
ularly, the random active set selection procedure could 
lead to model misspecification since kernel methods are 
nonparametric techniques whose estimates are directly 
based on training data. As for a greedy selection pro-
cedure, it requires at least O(MN2) additional operations 
for calculation of a selected criterion, which is likely to 
be too expensive. The second approach is based on re-
duced-rank approximations of the kernel matrix [13-16]. 
The construction of such low-rank approximation can be 
performed, for example, using the Nyström method [17] 
or incomplete Cholesky decomposition [18]. The compu-
tational complexity of the proposed methods is O(MN2), 
where M is either unknown until approximation is done 
or it is predefined by the user [19]. In the first case, one 
could face the problem of exceeding the computation-
al resources limit. In the second case, there could be a 
more compact approximation for a smaller M, than for 
one predefined by the user, which is not efficient enough.
In order to overcome this obstacle, we propose a new 
regularized kernel least squares algorithm based on a 
low-rank approximation of the inverse kernel matrix with 
a fixed budget. The proposed algorithm is based on the 
incomplete Cholesky decomposition with a modified 
stopping criterion that is using an approximation error 
criterion and an upper bound on the maximum dimen-
sion M. The novelty of the proposed algorithm is that it 
allows regulating the maximum computational burden of 
the identification algorithm and obtaining the least ap-
proximation error at the same time.

OBJECT OF STUDY

Let us consider a nonlinear process (plant) that can be 
modeled by a discrete nonlinear equation:

1 ( )n n ny f ε+ = +x (1)

where yn+1  e R Ris an output, xn = [un,,yn,yn-1,....,yn-d] e Rm 

is an input, d is a model order, f(xn)is an unknown func-
tion, εn N (0, σ2n) is independent and equally distributed 
Gaussian noise. Figure 1 presents a schematic repre-
sentation of the simulated nonlinear process.

Nonlinear process
(plant)


n dy − 1ny +( )nf x

nεny

nu

Figure 1:Nonlinear autoregressive process with  
exogenous input (NARX)

Many real processes and plants can be described by 
the model (1). As an example, the application of the pro-
posed algorithm is considered on the identification prob-
lem of the input and output pressure of the pump station. 
The pump station is shown in Figure 2.

Figure 2: Pump station HM 2500-230

The key elements of the pump station are the input pipe, 
the pump unit, valve, and the output pipe. The Input and 
output pipes are equipped with pressure sensors. The 
valve is used to control the input and output pressure.

MATERIALS AND METHODS
Kernel methods

Let us denote { , }, 1,n ny n N= =xD , as a training data
sample. The unknown function   can be approximated 
by a linear combination of kernel functions due to the 
Representer theorem [9]:

T
1

1
ˆ ( , )

N

n i i n
i

y α+
=

= =∑ x x kák (2)

where a = [a1,....,an]T, kT = [k(x1,xn),,....k(xn,xj)]. The kernel 
k =(xi,xj)is a positive definite function satisfying Mercer’s 
condition [9]:

( , ) ( ), ( )i j i j=x x x xf fk (3)

where : m →R Hf is a mapping of the original input
space Rm into a high-dimensional Hilbert space H .

We will use the kernel function k(xi,xj) of the following 
form:

2( , ) ( , )i j f l i jσ=x x x xk k

where σ2f is a height-scale parameter, the kernel kl(x-
i,xj)   depends on length-scale parameters l1.l2.... Further, 
we will use the notation θ = [σ2f,σ2n,l1,l2,....] as a vector 
of the kernel function  k(xi,xj) hyperparameters. Batch              
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estimation of the parameters α using a regularized ker-
nel least-squares criterion on training data points  D = 
{xn,yn},n = 1,N  has the following form [20]:

2 1( )nσ
−= +á K I y (4)

where y = [y1,y2,...,yN]T, σ2n  is noise variance (regular-
ization),  I is an identity matrix. The matrix K + σ2n is a 
positive semi-definite kernel matrix (Gram matrix): 

2
1 1 1

2

2
1

( , ) ( , )

( , ) ( , )

n N

n

N N N n

σ
σ

σ

 +
 

+ =  
 

+ 

x x x x
K I

x x x x



  



k k

k k
(5)

When a basic matrix inversion algorithm like Gauss elim-
ination or Cholesky factorization is used, calculation of 
the expression (3) requires O(N3) floating points opera-
tions.

Except parameters α , kernel  k(xi,xj) hyperparameters    
θ = [σ2f, σ2n,l1,l2,...] should be also optimized. A margin-
al likelihood logarithm or so-called model evidence are 
usually used as an optimization criterion [21]:

T 21 1( ) ln ln 2
2 2 2

| |n
NL σ π= − − + −è y á K I (6)

where  |K+σ2nI| is the determinant of the matrix K + σ2nI .

The criterion (6) has the following terms [22]. The first 
term  -0.5yTα is responsible for data fit. The second term 
-0.5ln|K + σ2nI| is the complexity penalty. The third term 
-0.5lnN2π is the normalization constant. If one would 
like to apply gradient optimization methods, partial deriv-
atives of the criterion (5) w.r.t. the hyperparameters θ = 
[σ2f, σ2n,l1,l2,...] are calculated as follows [21]:

2
T 2 1 ( )( ) 1 trace ( ( ) )

2
n

n
i i

L σ
σ

θ θ
− ∂ +∂

= − +  ∂ ∂ 

K Iè áá K I (7)

The computational complexity of the expressions (6) and 
(7) is O(N3) due to the need of the matrix (K+ σ2nI)-1 . 
Once (K + σ2nI)-1 is known, the calculation of the partial 
derivatives (6) requires O(N2) operations per one hyper-
parameter.

Fixed-budget approximation of the inverse kernel 
matrix

Since the matrix  is a positive semi-definite one, there 
exists a unique decomposition K+σ2nI ≈ LLT , where L  is 
a lower triangular matrix with positive diagonal elements 
[23]. In practice, for a wide range of kernel functions 
K(xi,xj), eigenvalues of the matrix K+σ2nI are decreasing 
rapidly, leading to the existence of low-rank approxima-
tion K≈GGT, where matrix G is of dimension N x M. For 
example, the commonly used Gaussian kernel has a rap-

idly decaying eigenspectrum, for more details see [24]. 
In the general case, if the eigenspectrum of the matrix  
K+σ2nI has a more complex structure, symmetric permu-
tation of the rows and columns of the matrix K should be 
performed to ensure acceptable approximation accura-
cy and stability of the decomposition algorithm. Existing 
methods for computing decomposition K≈GGT require 
O(MN2) operations, where M is either unknown until ap-
proximation is done or predefined by the user [19]. In the 
first case the resulting dimension M depends only on the 
chosen approximation accuracy δ in the criterion ‖K-GGT 
‖<δ , which is hard to choose properly when one would 
like to prevent the usage of more computational resourc-
es than it is permissible. In order to avoid these prob-
lems, we suggest setting the upper bound on the max-
imum dimension M of the matrix G, while continuing to 
use ‖K-GGT ‖<δ as an approximation error criterion. That 
is, if ‖K-GGT ‖<δ is not fulfilled at iteration , the algorithm 
stops in any case. The proposed stopping criterion al-
lows, on the one hand, getting accurate representations 
by minimizing an approximation error, and, on the other 
hand, fixing the computational burden of the algorithm at 
O(MN2), where M can be predefined by the user. Directly 
applying the approximation K≈GGT, one cannot reduce 
the computational burden since the matrix GGT has the 
same dimension as the matrix  K. The computational effi-
ciency can be improved by applying the matrix inversion 
lemma [25], in particular:

2 1 T 2 1

2 2 T 2 1 T

( ) ( )

( )
n n

n n n

σ σ

σ σ σ

− −

− − −

+ = + =

= − +

K I GG I

I G G G I G
(8)

To ensure stability, the calculation of the inverse (GT 

G+σn
2 I)-1  should be performed via Cholesky factoriza-

tion:

2 1 2 2 T 2 1 T

2 2 T 1 T                     

( ) ( )

( ( ))
n n n n

n n

σ σ σ σ

σ σ

− − − −

− − − −

+ = − + =

= −

K I I G G G I G

I G L L G
(9)

where the matrix L  is the Cholesky factor of the matrix 
GT G+σn

2 I.
Expressions (8) and (9) allow decreasing problem di-
mension from N x N  to M x M and reducing the com-
putational complexity of the algorithm from O(MN3) to 
O(MN2). The proposed regularized kernel least squares 
algorithm based on the incomplete Cholesky decompo-
sition [19] with proposed fixed-budget procedure and the 
matrix inversion lemma is summarized in Algorithm 1.
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Algorithm 1: Fixed-budget approximation of the inverse 
kernel matrix (FB-ICD)
Input: kernel matrix K, kernel approximation accuracy 
threshold  ,maximum approximation rank M, noise vari-
ance σn

2 .
Permutation vector: p = [1,2,...,N] 
Diagonal of the matrix K : d = diag(K)
First row of the matrix G : G1:N,1=K1:N,1

Iteration counter: i = 1

while                    and i M≤

if    1i >

end if

end while 

Calculate the Cholesky factor L of the matrix GT G+σn
2I

Output: inverse kernel matrix (K+σn
2I)-1

 
N

j
j i

d δ
=

>∑

( ) T
: : , : : ,1: 1 : ,1: 1diagi n i N i N i N i i N i− −= −d K G G e

* arg max j
i j N

j
≤ ≤

= d

*i j=p p

*: ,1: 1 ,1: 1i N i j i− −=G G

*,i i j=G d

( )1:

T
1: , , 1: ,1: 1 ,1: 1 ,i N ii N i i N i i i i i++ + + −= −p pG K G G G

1i i= +

,1:i= pG G

2 1 2 2 T 1 T( ) ( ( ))n n nσ σ σ− − − − −+ = −K I I G L L G

Kernel-based model order estimation

The Model order d affects the model (1) accuracy along 
with the chosen kernel type κ(xi,xj) and its hyperparame-
ters  . To estimate the model order, one should optimize 
kernel hyperparameters for a given model order and 
then calculate the value of an identification error using 
optimized hyperparameters. The optimal value of the 
model order is taken to be the one that corresponds with 
the least identification error. This procedure involves the 
sequential construction of several models for different 
values of the model order, which requires a fairly large 
amount of computational resources. For example, let D 
denote the maximum value of the model order. Direct es-
timation of the model order based on the expression (2) 
will require O(DN3) operations. Computational efficiency 
of this procedure can be improved by applying the pro-

posed fixed-budget approximation of the inverse kernel 
matrix.Let us denote the input vector as xn (d)=[un,,yn,yn-

1,…,yn-d] , where d is the model order. The matrix K+σn
2I  

for training data xn (d),n=1,N is given by:

2
1 1 1

2

2
1

( ( ), ( )) ( ( ), ( ))

( ( ), ( )) ( ( ), ( ))

n N

n

N N N n

d d d d

d d d d

σ
σ

σ

 +
 

+ =  
 

+ 

x x x x
K I

x x x x



  



k k

k k

(10)

and the corresponding model evidence will have the 
form:

T 21 1( , ) ln ln 2
2 2 2

| |n
NL d σ π= − − + −è y á K I (11)

where the matrix L is the Cholesky factor of the matrix GT 
G+σn

2I . The optimal model order d is one that maximizes 
the model evidence

The expression ln | K+σn
2I | can be calculated using ma-

trix determinant lemma [25]:

2 2 2 2

1 1 1
ln ln| |

N M M

n n n ii
i i i

σ σ σ −

= = =
+ = + +∑ ∑ ∑K I L (12)

ˆ arg max ( , )d L d= è (13)

The computational complexity of the optimization proce-
dure (13) using Algorithm 1 is O(DCN2), where C < N for 
a significant number of kernel functions. The proposed 
algorithm for the kernel-based model order estimation is 
shown in Algorithm 2.

Algorithm 2: Model order estimation algorithm based on 
the marginal likelihood
Input: training sample D = {xn,yn},n=1,N, approximation 
accuracy δ, maximum approximation rank M, maximum 
model order D, hyperparameters θ.
for d=1…D
for d=1…D
calculate matrix K + σn

2I using (10)
calculate matrix (K + σn

2 I)-1 using Algorithm 1
calculate vector α = (K + σn

2I)-1 y
calculate value L(θ,d) using (11)
end for
calculate model order d ̂ using (13)
Output: estimation of the model order d ̂.

EXPERIMENTAL RESEARCH

The efficiency of the proposed algorithms was tested 
during simulations using artificial training samples [26], 
generated by discrete difference equations with additive 
Gaussian noise. The list of used artificial discrete differ-
ence equations is shown in Table 1.
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Table1: Artificial nonlinear difference equations

№ Output Input Noise

1

2

3

1
1 2 2

1

( 2.5)
1
n n n

n n
n n

y y yy u
y y
−

+
−

+
= +

+ +

1 10.3 0.6  0.3sin(3 ) 0.1sin(5 )n n n n ny y y u uπ π+ −= + + +

3
1 21

n
n n

n

yy u
y

+ = +
+

sin(2 25)nu nπ=

sin(2 25)
sin(2 10)
nu n

n
π

π
= +

+

sin(2 250)nu nπ=

(0,0.65)N

(0,0.18)N

(0,0.29)N

Table 2: Simulated algorithms and their computational complexity

Algorithm Approximation Computational complexity

Cholesky O(N3)

Subset of data O(M3)

Nyström approximation O(MN2)

FB-ICD O(CN2), C ≤ N

2 T
NN nσ+ ≈K I LL

2 T
MM nσ+ ≈K I LL

2 1 2
NN n NM MM MN nσ σ−+ ≈ +K I K K K I

2 T 2
NN n nσ σ+ ≈ +K I GG I

Experiments were performed for algorithms summarized 
in Table 2.

Training and test samples are given by D={xn,yn},n= 1,N 
, where xn=[un-1,yn-1,yn-2,…,yn-d]. For simulations we use 
approximation accuracy threshold δ=1x10-6, and we also 
fixed maximum approximation ranks and active set sizes 
at M=N/2 , where N is the sample size.Simulations were 
performed using the following squared exponential ker-
nel function:

2 T1( , ) exp ( ) ( )
2i j f i j i jσ  = − − − 

 
x x x x P x xk

where P=diag(l-1)   is the diagonal matrix, l=[l1,l2,…,lm]  , 
where m is the number of input variables.

The experiments were performed as follows. For each 
discrete difference equation in table 4, we generated 10 
independent training samples of sizes N = 500, 1000, 
1500, 2000, 2500, 5000. Then for each training sample 
we optimized hyperparameters θ and model order d us-
ing the conjugate gradient method. Estimated hyperpa-
rameters θ and model order d were used to calculate 
predictions and a root mean square error. During the 
hyperparameters optimization procedure, we measured 
the running time of the algorithms.Table 3 contains mean 
RMSE and running time values for each simulation and 
training data size. For convenience Table 3 contains 
modeling results for the first artificial data only. An Aver-
aged root mean square error (RMSE) and running time 
in seconds (T) are shown in Figures 3-5. RMSE values 
are calculated using one-step-ahead predictions on test 
samples. The vertical axes in Figures 3-5 are in a loga-
rithmic scale.
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Table 3: Modeling results

Algorithm N RMSE runtime (s)

Cholesky

500 0.2115±0.0075 0.0537±0.0008
1000 0.2084±0.0127 0.3857±0.0043
1500 0.2056±0.0077 1.2951±0.0320
2000 0.2044±0.0111 4.3842±0.0392
2500 0.2024±0.0101 9.9327±0.0190
5000 0.1998±0.0174 129.75±0.7158

Subset of data

500 0.2111±0.0068 0.0079±0.0001
1000 0.2090±0.0129 0.0535±0.0004
1500 0.2060±0.0071 0.1635±0.0026
2000 0.2050±0.0112 0.3884±0.0076
2500 0.2024±0.0101 0.7526±0.0247
5000 0.1995±0.0161 10.034±0.0689

Nystrom 500 0.2116±0.0076 0.0278±0.0009

Algorithm

1000 0.2083±0.0128 0.1664±0.0011
1500 0.2056±0.0078 0.4625±0.0006
2000 0.2044±0.0111 1.0432±0.0092
2500 0.2027±0.0100 1.9699±0.0509
5000 0.1999±0.0177 22.593±0.0251

FB-ICD

500 0.2115±0.0075 0.0314±0.0016
1000 0.2084±0.0127 0.1206±0.0042
1500 0.2056±0.0077 0.2498±0.0100
2000 0.2044±0.0111 0.4442±0.0051
2500 0.2024±0.0101 0.6964±0.0104
5000 0.1998±0.0174 2.8342±0.0555

Figure 3: Modeling results for the first artificial dataset
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Figure 4: Modeling results for the second artificial dataset

Figure 5: Modeling results for the third artificial dataset

As we can see in Figures 3-5, the general trend is that 
as N increases the RMSE values decrease. The RMSE 
values for the proposed algorithm are almost similar to 
ones obtained by the Cholesky algorithm, which is based 
on a full-rank approximation of the kernel matrix. In Fig-
ure 5 we can see RMSE oscillations for the algorithms 
based on Nyström approximation and the subset of data 
points that can be explained by their random subset 
construction procedure causing model misspecification 
in some cases, especially noticeable for small training 
samples. From Figure 5 another interesting observation 
can be made. Particularly, for training sample sizes N 
from 500 to 2000 and M from 250 to 1000, the subset of 
data is somewhat better than other algorithms. It seems 
that when the training size is small (when N< 2500 and 
M< 1250), the random subset construction procedure 
can produce a more representative subset than the full 
sample, while for more large training samples (when N> 
2500 and M> 1250) it is not true. In Table 4 We see that 
the proposed algorithm for the training sample size N 
= 5000 and M = 2500 is about 4 times faster than the 
subset of data and about 8 times faster than Nyström 
method. For small training samples (when N< 2000 and 
M< 1000), the algorithm based on the random subset of 
data is faster than the proposed one. In conclusion, the 
proposed algorithm seems to be more attractive when 
the training sample size N is larger than 2500 and the 
maximum approximation rank M is larger than 1250. For 
smaller training samples, the Nyström method and the 

subset of data can show similar or even better perfor-
mance.

SIMULATIONS USING REAL DATA

The prediction performance of the proposed algorithm 
was tested on a real dataset, obtained during field ex-
periments of the pump station. The structure of the pump 
station is presented in Figure 6. 

Controller

1

2

3 4 5 6

7

8 9

10

Controller

Figure 6: Pump station structure, where:1 is the input 
pipe, 2 is the pressure sensor of the input pipe, 3 is the 
pump unit, 4 is the pressure sensor of the header, 5 is 
the valve, 6 is the pressure sensor of the output pipe, 
7 is the output pipe, 8 is the input pressure setpoint, 9 
is the output pressure setpoint, 10 is the sensor of the 

valve position
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Training and test data samples are given by D={xn,yn}=1,N 
, where xn=[un-1,yn-1,yn-2,…,yn-5] .The Input variable un  is a 
valve position (closing percentage). The output variable   
is the pressure of the input (output) pipe. The input and 

Figure 7: Testing valve position 

output pressures are modeled separately. The Training 
data sample size N = 1500.The Test sample size N = 
1000. The approximation accuracy threshold is δ=1x10-6 .

Figure 8: Prediction results, the maximum rank M is not fixed

Figure 9: Prediction results, the maximum rank M is fixed

Figure 7 presents the valve closing percentage in the 
test sample. Figure 8 shows one-step-ahead prediction 
results when the maximum rank M is not fixed. Figure 
9 shows one-step-ahead predictions for the fixed maxi-
mum rank M that is less than one obtained by using the 
approximation accuracy threshold only. RMSE values 
and the maximum approximation ranks M are shown in 
the graphs. From the proposed Figures 8-9 it is clear that 
less maximum approximation rank M could lead to more 
accurate predictions, even though the approximation ac-

curacy  δ is smaller (approximation accuracy δ<=1x10-6 

is reached at M = 785 for the input pressure prediction 
and at M = 534 for the output pressure predictions). The 
Presented results confirm the applicability and effective-
ness of the proposed algorithm.

CONCLUSION
In this paper, we addressed ourselves to a computational 
problem of the kernel algorithms. Kernel algorithms are 
nonparametric techniques that allow solving nonlinear 
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identification problems in a principled manner. Howev-
er, the application of the kernel algorithms presents a 
considerable computational difficulty, associated with the 
inversion of large matrices. Even though existing algo-
rithms can typically be used to solve high-dimensional 
identification problems, they are not efficient enough in 
the case when one needs the identification algorithm to 
not exceed some certain computational burden. In order 
to solve this problem, we proposed a novel fixed-bud-
get kernel matrix inversion algorithm for the regularized 
kernel least-squares problem. The proposed algorithm 
allows regulating the computational burden of the iden-
tification algorithm, which can be useful for the identi-
fication problems with strictly limited computational re-
sources. We also proposed a kernel-based framework 
for NARX model order estimation. In the end, we showed 
some experimental results illustrating the performance 
of the proposed algorithm. Although the proposed algo-
rithm is capable of dealing with identification problems 
effectively, it has several peculiarities. Firstly, it is still not 
quite clear how to reasonably choose the approximation 
accuracy threshold. Secondly, the proposed algorithm is 
designed for the batch formulation, when training data is 
fixed, thus it cannot be extended to the online case di-
rectly. The solution to these problems will be considered 
in future research.
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