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The main purpose of the paper is to obtain solutions for new non-stationary inverse problems for elastic rods. The 
objective of this study is to develop and implement new methods, approaches and algorithms for solving non-station-
ary inverse problems of rod mechanics. The direct non-stationary problem for an elastic rod consists in determining 
elastic displacements, which satisfi es a given equation of non-stationary oscillations in partial derivatives and some 
given initial and boundary conditions. The solution of inverse retrospective problems with a completely unknown 
space-time law of load distribution is based on the method of infl uence functions. With its application, the inverse 
retrospective problem is reduced to solving a system of integral equations of the Volterra type of the fi rst kind in time 
with respect to the sought external axial load of the elastic rod. To solve it, the method of mechanical quadratures is 
used in combination with the Tikhonov regularisation method. 
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INTRODUCTION 

An elastic homogeneous isotropic rod of fi nite length is 
considered, the left end of which is rigidly fi xed, and the 
right end of the rod is free. At the initial moment of time, 
a distributed unsteady load begins to act on the rod, the 
dependence of which on time and the distribution law 
along the coordinate are unknown and must be deter-
mined in the process of solving the inverse problem. It is 
assumed that the displacements are known in some vi-
cinity of the free end of the rod. In practice, this informa-
tion can come from sensors for measuring longitudinal 
displacements installed in several sections in the vicinity 
of the free end of the rod. 

To construct a method for solving the inverse problem, it 
is fi rst necessary to obtain solutions to the direct problem, 
in which the axial load is known and it is required to de-
termine the unsteady displacements for the elastic rod. 
The methodology for solving the direct problem is based 
on the principle of superposition, in which displacements 
and contact stresses are related by means of integral 
operators with respect to the spatial variable and time 
[1-3]. The cores of the latter are the so-called infl uence 
functions. These functions represent fundamental solu-
tions to systems of diff erential equations of motion for 
the beam under consideration [4-6]. Their construction is 
a separate task. The infl uence functions are found using 
the Laplace transform in time and expansions in Fourier 
series in the system of eigenfunctions [7, 8]. 

In inverse problems, the right-hand side in the equations 
of unsteady oscillations is not specifi ed, but there is some 
information about the displacements at the points of the 
sensor’s installation. Using the method of infl uence func-
tions, the inverse problem is reduced to solving a system 

of integral equations of the Volterra type of the fi rst kind 
in time with respect to the expansion coeffi  cients of the 
required load in a Fourier series in terms of the system 
of eigenfunctions [9-11]. To solve integral equations, the 
mechanical quadrature method is used in combination 
with the Tikhonov regularisation algorithm [12, 13]. The 
possibilities of using the proposed identifi cation method 
in the presence of measurement noise are investigated. 

It should be noted that along with many studies aimed 
at solving theoretically and practically important direct 
problems for thin-walled structural elements, for exam-
ple, works [14-16], including, taking into account the ef-
fect of temperature, material anisotropy, multilayer struc-
ture of elements, there are practically no papers devoted 
to solving non-stationary inverse problems [17-19]. This 
determines the relevance of this paper. 

METHODS FOR SOLVING DIRECT AND INVERSE 
NON-STATIONARY PROBLEM 

The mathematical formulation of the direct problem in-
cludes the equation of motion for a homogeneous rod 
of constant cross-section, boundary conditions, and zero 
initial conditions in dimensionless form [20-22] (Eqs. 
1-3): 

(3)

(2)

(1)
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In the inverse problem, it is assumed that the displace-
ments u(x,τ) in certain vicinity xϵ[b

1
,b

N
] of the free end of 

the rod are known. In practice, this information can come 
from displacement sensors installed in the rod sections 
x=b

1
,b

2
,...,b

N
 (Fig. 1). It is required, according to the data 

obtained from the displacement sensors, installed at 
points b

1
,...,b

N
, to restore the axial load p(x,τ). 

Thus, the mathematical formulation of the inverse prob-
lem consists of equation (1) with an unknown right-hand 
side p(x,τ), boundary and initial conditions (3), as well as 
additional conditions (Eq. 4): 

Figure 1: Sensor installation diagram 

(4)

where U
n
(τ) – known functions of time. In practice, they 

represent the displacement values from the sensors. 

To solve the direct and inverse problems, we construct 
the infl uence function G(x,τ) [23-25]. It is a solution of 
problem (1), with the replacement of the load p(x,τ) by a 
single load δ(x−ξ)δ(τ), where δ(x−ξ)δ(τ) – the Dirac delta 
function [23] (Eqs. 5-7): 

(7)

(6)

(5)

To calculate the infl uence functions, we apply to prob-
lem (5) the Laplace transform in time, (the index "L" is 
the Laplace transform, s is the parameter of the Laplace 
transform GL=GL(x,ξ,s)) (Eqs. 8-9): 

(9)

(8)

Let us fi nd the eigenfunctions and eigenvalues of the ho-
mogeneous problem (1). For this we apply the Fourier 
variable separation method. Substitute u(x,τ)=X(x)T(τ) 
in, then (Eqs. 10-13): 

(11)

(10)

(13)

(12)

Thus, X
n
(x)=sinλ

n
x – eigenfunctions, and –ei-

-genvalues of homogeneous problem (1). To solve (5-7), 
we apply the method of incomplete separation of vari-
ables. We represent the required function G(x,τ) and the 
function δ(x−ξ)δ(τ) in the Fourier series in eigenfunctions 
(Eqs. 14-15): 

(15)

(14)

Substituting (14-15) into (5-7), we arrive at the problem 
in terms of the coeffi  cients of the series (14-15): 

(17)

(16)

Applying the integral Laplace transform with respect to 
time to (Eqs. 16-17), we arrive at the equation for the La-
place images of the coeffi  cients of the expansion series 
of the infl uence function (s is the transformation param-
eter) (Eq. 18): 

by solving which we fi nd (Eq. 19): 

(19)

(18)

Performing the inverse transformation, we obtain the 
originals of the desired coeffi  cients (Eq. 20): 

Then the original of the infl uence function will have the 
form (Eq. 21): 

(21)

(20)
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SOLUTION OF THE DIRECT AND INVERSE 
NON-STATIONARY PROBLEM 

Knowing the infl uence function G(x,ξ,τ) and based on the 
principle of superposition, the solution to problem (1) can 
be represented as (Eq. 22): 

(22)

Expand the external axial load in a Fourier series (Eq. 
23): 

(23)

Substituting series (21) and (23) into (22) and taking into 
account the orthogonality of the system of eigenfunc-
tions, we arrive at an integral representation similar to 
(22) for the displacements (Eq. 24): 

(24)

For an approximate determination of the displacements 
of the elastic rod u(x,τ) we use the formula for average 
rectangles. We split the segment of integration [0,τ] into 
M parts with a uniform step h=τ/M. In equation (23), we 
restrict ourselves to the fi rst N terms of the series. The 
integrals in (23) are replaced by approximate quadrature 
formulas of the method of mean rectangles, then (Eq. 
25): 

(25)

Examples of solving the direct problem with an estimate 
for the convergence of formula (25) are given in [26-28]. 
The inverse problem is to determine the coeffi  cients p

n
(τ) 

of series (23). Suppose N sensors are installed on a 
certain rod segment, which measure the values of rod 
displacements U

1
(τ)=u(b

1
,τ),U(τ)=u(b,τ),...,U

ਭ
(τ)=u(b

N
,τ) 

depending on time τ (Fig. 1), where 

b๛ – coordinate of the fi rst sensor on the rod, bN– coordi-
nate of the last sensor. Restricting ourselves to the fi rst 
N terms, from (24) we obtain N integral representations 
(Eq. 26) which form a system of algebraic equations for 
the Volterra integral operators In(τ), n=1,N: 

(26)

System (26) is written in vector-matrix form (Eq. 27):

___

(27)

 Solving this system, we obtain the vector I (Eq. 28): 

where (Eq. 29): 

Vector-matrix equality (28) is equivalent to N indepen-
dent Volterra integral equations of the fi rst kind with re-
spect to the sought coeffi  cients of series (23):  

It is known that for G(0)=0, (Eq. 30) are incorrect in the 
sense of J. Hadamard [29, 30]. Therefore, to solve prob-
lem (Eq. 30), we apply the regularisation method by A.N. 
Tikhonov [31, 32]. 

NUMERICAL SOLUTION OF THE VOLTERRA INTE-
GRAL EQUATION OF THE FIRST KIND 

To solve equations (30), we will use the formula for mean 
rectangles. Let us fi x some fi nite time T. Divide the in-
tegration time interval [0, T] into M equal parts with a 
uniform step h=T/M. For each time moment τ

m
=hm we 

replace equation (30) with a numerical analogue using 
the method of mean rectangles (Eqs. 31-33): 

(33)

(32)

(31)

(30)

(29)

(28)

As a result, we arrive at a system of linear algebraic 
equations with respect to p

nk
, which are the values of the 

sought coeffi  cients p
n
(τ) at times t

k
, k=1,...,M (Eq. 34): 

where (Eqs. 35-36): 

(36)

(35)

(34)

Due to the ill-posedness of problem (30), the matrix G
n
 is 

ill-conditioned; therefore, we solve the system of equa-
tions (34) using the regularisation method by A.N. Tik-
honov [31, 32]. Tikhonov's regularization method is an 
algorithm that allows fi nding an approximate solution to 
ill-posed operator problems of the form A

x
 = u. Tikhonov's 

method is perhaps the most popular in solving problems 
with approximately given information. It also essentially 
uses a priori information about the exact solution of the 
problem. In this case, (34) is replaced by the problem of 
fi nding the minimum of the Tikhonov functional (Eq. 37): 

It can be shown [33-35] that the problem of minimising 
the Tikhonov functional is reduced to solving another 
system of algebraic equations (38): 

(38)

(37)
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where α – small positive regularisation parameter, which 
is selected in some optimal way, P

n
 – quasi-solution vec-

tor of the equation of the system (34). 

EXAMPLES OF SOLVING THE INVERSE PROBLEM 

Consider several problems with diff erent assigned right-
hand sides for equation (24) (Fig. 2). The rod materi-
al is steel with the following dimensional parameters: 
ρ=7850kg/m3, E=2·1011 Pa, b

1
=0.1l – coordinate of the 

fi rst sensor, b
N
=0.9l coordinate of the last sensor. The 

length of the rod is 1 m. 

The corresponding dimensionless parameters are: 

c=5047.55, b
1
=0.1, b

N
=0.9, l=1. The external axial load 

given for fi nding the displacements of the rod, shown in 
Figure 2a, equals – P(x,τ)=10−3(e−τsin(πx)+e−τsin(2πx)), 
in Figure 2b, equals – P(x,τ)=e−τ(−(3x−1.5)2+2.5). 

~
Here, the dashed line is the reconstructed external axi-
al load, the solid line is the external axial load specifi ed 
to fi nd the displacements of the rod. To simulate exper-
imental data on displacement at the points of sensors 
installation, we add to the displacements found a column 
vector composed of small random numbers and analyse 
the behaviour of the solution. As seen from Fig. 3, when 
adding a column vector, the solution to the inverse prob-
lem remains practically unchanged. Here, the specifi ed 
external axial load is a solid line, the restored external 
axial load is dashed. 

CONCLUSIONS 

A new inverse problem of recovering a non-stationary 
linear load for an elastic rod of fi nite length is solved. A 
method has been developed for constructing a non-sta-
tionary infl uence function for an elastic rod, which is used 

Figure 2: Comparison of the solution to the inverse problem with the external axial load specifi ed for the solution of 
the direct problem 

Figure 3: Comparison of the solution of the inverse problem with the external axial load specifi ed for the solution of 
the direct problem, taking into account noise 
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to solve the direct and inverse problems. This function 
is a fundamental solution to the diff erential equation of 
motion of the investigated rod. The infl uence function is 
found using the Laplace transform in time and expan-
sions in Fourier series in the system of eigenfunctions. 
In order to obtain a solution to the inverse retrospective 
problem, the direct problem of determining the displace-
ments of an elastic rod was solved. The methodology 
for solving the direct problem is based on the principle 
of superposition, in which displacements and linear load 
are connected by an integral operator with respect to the 
spatial variable and time. Its core is the infl uence func-
tion.  

In the inverse problem, the linear load is not known and 
must be identifi ed. In this case, the movements of the rod 
at the points of installation of the sensors are assumed to 
be known. The construction of the solution to the reverse 
retrospective problem is based on the method of infl u-
ence functions. With its application, the inverse problem 
is reduced to solving a system of Volterra integral equa-
tions of the fi rst kind for the expansion coeffi  cients of the 
distributed load in a Fourier series. To solve the system 
of integral equations, the mechanical quadrature method 
is used in combination with the Tikhonov regularisation 
method. 

The proposed formulation and method for solving the 
nonstationary inverse problem can serve as the basis 
for the creation of complexes for monitoring structures 
in real time. They will allow to monitor and timely pre-
vent the occurrence and development of damage directly 
during operation, monitor various structural transforma-
tions, restore the space-time laws of external loads act-
ing on the structure. In connection with the rapid devel-
opment of computers, automation and robotics, the tasks 
of this class are at the forefront of modern science. 
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