Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science


DOI: 110.5937/jaes16-17230
This is an open access article distributed under the CC BY-NC-ND 4.0 terms and conditions. 
Creative Commons License

Volume 16 article 568 pages: 583 - 591

Yury Loskutov
Volga State University of Technology, Russian Federation

Alexandr Kapustin
Volga State University of Technology, Russian Federation

Alexandr Kudryavtsev
Volga State University of Technology, Russian Federation

Albert Nasibullin
Joint stock company “Volzhsky Electromechanical Factory”

Alexandra Lebedeva
Joint stock company “Semiconductor device plant”

The article considers a mathematical model of human gait. Gait parameters necessary to build an analytical model of motion are defined. Calculated ratio to define the coordinates of key points of legs at any moment of time is obtained and a kinematic analysis of locomotions is performed. The results of computer modelling of walking process are given. The calculated ratio and the mathematical model can be used for design process and programming of the operation of control systems of exoskeleton developed for medical purposes.

View article

The work was carried out in the framework of the comprehensive project aimed at setting up the high-tech production «Setting up the high-tech production of a multifunction robotic exoskeleton for medicinal purposes» («REM»), cipher 2017-218-09-1807, approved by the decree of the Government of the Russian Federation № 218 dated April 9, 2010. 

1. Hugh Herr. (2009) Exoskeletons and orthoses: Classification, design challenges and future directions. Journal of Neuro Engineering and Rehabilitation. 6(21):21. DOI: 10.1186/1743-0003-6-21

2. Vorobiev A.A., Petrukhin A.V., Zasypkina O.A., Krivonozhkina P.S. (2015) Ekzoske-let – novye vozmozhnosti abilitatsii i reabilitatsii (analitichesky obzor) [Exoskeleton is New Possibilities of Habilitation and Rehabilitation (Analytical Survey).] Voprosy rekonstruktivnoy i plasticheskoy khirurgii [Problems of Reconstructive and Plastic Surgery]. Vol. 18. No 2 (53). Pp. 51-62.

3. Cristian C. Velandia, Diego A. Tibaduiza, Maribel Anaya Vejar. Proposal of Novel Model for a 2 DOF Exoskeleton for Lower-Limb Rehabilitation // Robotics, MDPI. – 2017, 6 (20). Р. 1- 25. doi:10.3390/robotics6030020

4. D. X. Liu, X. Wu, W. Du, C. Wang, C. Chen, and T. Xu, (2017) Deep spatial-temporal model for rehabilitation gait: optimal trajectory generation for knee joint of lower-limb exoskeleton. Assembly Automation, vol. 37, no. 3, pp. 369–378.

5. Sado F, Yap HJ, Ghazilla RAR, Ahmad N (2018) Exoskeleton robot control for synchronous walking assistance in repetitive manual handling works based on dual unscented Kalman filter. PLoS ONE 13(7): e0200193.

6. Jianhua Chen, Xihui Mu, Fengpo Du. (2017) Biomechanics analysis of human lower limb during walking for exoskeleton design. Journal of Vibroengineering, Vol. 19, Issue 7, Р. 5527-5539. or https://www.jvejournals.

7. Qiming Chen, Hong Cheng, Chunfeng Yue, Rui Huang, and Hongliang Guo. (2018) Dynamic Balance Gait for Walking Assistance Exoskeleton. Applied Bionics and Biomechanics. Volume 2018, 10 p. Article ID 7847014,

8. Loskutov Yu. V., Kapustin A. V., Klyuzhev K. S., Kudryavtsev A. I., Loskutov M. Yu., Fadeev A. M. (2017) Coputer Simulation of Regular Walking Based on the Kinematic Analysis of Movements and the Synthesis of Exoskeleton Control Algorithms. Vestnik of Volga State University of Technology. Ser.: Radio Engineering and Infocommunication Systems.. No 3 (35). Pp. 47-60. DOI: 10.15350/2306-2819.2017.3.47

9. Winter, David A., Biomechanics and motor control of human movement / David A. Winter. – JOHN WILEY & SONS, INC., 2009 – 370 p. ISBN 978-0-470-39818-0 (cloth)

10. Michael Oluwatosin Ajayi. Modelling and control of actuated lower limb exoskeletons : a mathematical application using central pattern generators and nonlinear feedback control techniques. General Mathematics [math.GM]. Universite Paris-Est, 2016.

11. Skvortsov, D.B., Diagnostics of the motion activity with instrumental methods: gait analysis, stabilometry / D.V. Skvortsov. – М.: Т.М. Andreeva. 2007. – 640 p.

12. Kapandzhi, A.I. Nizhnyaya konechnost: Funktsionalnaya anatomiya [Lower Limb: Physiological Anatomy] / A.I. Kapandzhi; preface Prof. Thierry Judet; [Translation from French G. Abeleva, E. Kishenevsky]. Moscow: Publishing house «E»2017. 352 p. ISBN 978-5-699-43912-6.

13. Mark L. Latash, Vladimir Zatsiorsky. Biomechanics and Motor Control: Defining Central Concepts. – Elsevier, Academic Press, 2016. – p. 426.

14. T. Koolen, T. D. Boer, J. Rebula, A. Goswami, and J. Pratt. (2012) Сapturability-based analysis and control of legged locomotion, part 1: theory and application to three simple gait models. The International Journal of Robotics Research, vol. 31, no. 9, pp.  1094–1113.

15. J. Pratt, T. Koolen, T. D. Boer et al., (2012) Capturability-based analysis and control of legged locomotion, part 2: application to m2v2, a lower-body humanoid. The International Journal of Robotics Research, vol. 31, no. 10, pp. 1117–1133.

16. Kolesnikova G.P., Formalsky A.M. (2014) Ob odnom sposobe modelirovaniya pok-hodki cheloveka [About One Method of Human Gait Modeling]. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovations] No 1 (25). P. 11. (reference data 10.07.2017).

17. Apaleeva A.M. (2012) Razrabotka algoritma issledovaniya kinematiki dvizheniya cheloveka [Development of the Research Algorithm of Human Motion Kinematics]. Vestnik Amurskogo gosudarstvennogo universiteta. Seriya: Estestvennye i  ekonomicheskie nauki [Vestnik of Amur State University. Series: Natural and Economic Sciences]. No 59.Pp. 12-17.

18. The objective assessment of the gait function: clinical recommendations / D.V. Skvortsov and others. – M.: Stroke struggle National Association, Rehabilitation Union of the RF, Russian Association for sport medicine and rehabilitation of disabled people, Interregion-al Public Organization “Union of Neuroanesthesia and neuroresuscitation specialists”, 2016.– 25 p.