An experimental study is presented to characterize the face/core debonding on sandwich plate specimens under mode-I loading. The experiment was conducted with the specimens of an asymmetrical double cantilever beam (ADCB). Several specimens with different core thicknesses were analysed to estimate the strain energy release rate (SERR). The SERR of mode-I (GI) calculation uses two data reduction methods namely the Modified Beam Theory (MBT) and Compliance Calibration (CC) methods. The GI depicted on the R-Curve expresses the damage behaviour of the sandwich plates. The critical energy release rate (GIC) resulted of the MBT data reduction method produces a higher value than CC method, due to the differing assumptions between the two methods. The GIC value also correlates directly with the peak load value. The difference in sandwich plate thickness, particularly the core material thickness, does not significantly affect the damage behavior regarding the sandwich material's GIC value.
The research leading to these results has received finan¬cial support from the “BPI-Beasiswa Penyelesaian Studi S3” of the Ministry of Education and Culture of The Republic of Indonesia
1.
SANDCORe, (2013). Best Practice
Guide for Sandwich Structures in Marine Applications. University of Newcastle
upon Tyne, New Castle.
2.
Ismail, A., Zubaydi, A.,
Piscesa, B and Panangian, E. (2021) A comparative study of conventional and
sandwich plate side-shell using finite element method, IOP Conference Series:
Materials Science ans Engineering, 2nd International Conference on Mechanical
Engineering Research and Application (iCOMERA 2020), DOI:
10.1088/1757-899X/1034/1/012027
3.
Ismail, A., Zubaydi, A.,
Piscesa, B. and Tuswan (2021). Study of Sandwich Panel Application on Side Hull
Of Crude Oil Tanker, Journal of Applied Engineering Science, 19(4), 1090-1098,
DOI:10.5937/ jaes0-30373.
4.
Sujiatanti, S.H., Zubaydi, A.,
Budipriyanto, A. (2018). Finite Element Analysis of Ship Deck Sandwich Panel.
Applied Mechanics and Materials, vol. 874, 134- 139, DOI:
10.4028/www.scientific.net/AMM.874.134
5.
Folie, G. M. (1971). The
Behaviour and Analysis of Orthotropic Sandwich Plates, Building Science, vol.
6, pp. 57-67, DOI: 10.1016/0007-3628(71)90004-1
6.
Nordstrand, T., Carlsson, L. A.
and Allen, H. G. (1994). Transverse shear stiffness of structural core
sandwich. Composite Structures, vol. 27, pp. 317-329, DOI:
10.1016/0263-8223(94)90091-4
7.
Palomba, G., Epasto, G and
Crupi, V. (2021). Lightweight sandwich structures for marine applications: a
review. Mechanics of Advanced Materials and Structures, vol 29(26),
pp.4839-4864, DOI:10.1080/15376494.2021.1941448
8.
Ariesta, R.C., Zubaydi, A.,
Ismail, A., Tuswan, T.. (20210 Damage evaluation of sandwich material on side
plate hull using experimental modal analysis, Materials Today: Proceedings 47,
pp. 2310-2314. DOI: 10.1016/j.matpr.2021.04.293.
9.
Zenkert, D. (2009). Damage
Tolerance of Naval Sandwich Panels. Daniel, I. M.; Gdoutos, E. E.; Rajapakse,
Y. D. S. (Eds), Major Accomplishments in Composite Materials and Sandwich
Structures. Springer
Dordrecht, pp 279–303.
10.
Rarani, M. H., Shokrieh, M. M.
and Camanho, P. P. (2013). Finite element modelling of mode I delamination
growth in laminated DCB specimens with R-curve effects. Composites Part B:
Engineering, vol. 45 (1), pp. 897-903. DOI: 10.1016/j.compositesb.2012.09.051
11.
Ramji, A., Xu, Y., Yasaee, M.
and Grasso, M. (2020) Delamination migration in CFRP laminates under mode I
loading. Composites Science and
Technology, vol. 190, DOI: 10.1016/j.compscitech.2020.108067
12.
Chen, C. D. and Lai, W. L.
(2020). The analysis of mode II strain energy release rate in a cracked
sandwich beam based on the refined zigzag theory. Theoretical and Applied
Fracture Mechanics, vol. 107, DOI: 10.1016/j.tafmec.2020.102504
13.
Moreira, R. D. F., de Moura, M.
S. F. S., Rocha, R. J. B., and Oliveira, C. F. M. (2022). Mode II fracture
caracterisation of a honeycomb/carbon-epoxy sandwich panel using the
assymmetric end-notched flexure test. Journal of sandwich Structures & Materials,
vol 24(7), DOI: 10.1177/10996362221118031
14.
Shokrieh, M. M., Zeinedini, A.,
and Ghoreishi, S. M. (2017). On the mixed mode I/II delamination R-curve of
E-glass/epoxy laminated composites. Composites Structures, vol. 171, pp. 19-31.
DOI: 10.1016/j.compstruct.2017.03.017
15.
Whitney, J. M., Browning, C.
E., and Hoogsteden, W. (1982). A double
cantilever beam test for characterizing mode I delamination of composite
material. Journal Reinforced Plastics and Composites, vol. 1(4), pp. 297-313,
DOI: 10.1177/073168448200100
16.
Aviles, F., and Carlsson, L. A.
(2008). Analysis of the sandwich DCB specimen for debond characterization,
Engineering Fracture Mechanics , vol. 75 (2), pp. 153-168, DOI:
10.1016/j.engfracmech.2007.03.045
17.
Ramantani, D. A., de Moura, M.
F. S. F., Campilho, R. D. S. G., and Marques, A. T. (2010). Fracture
characterization of sandwich structures interfaces under mode I loading.
Composites Science and Technology, vo. 10(9), p. 1386–1394, DOI:
10.1016/j.compscitech.2010.04.018
18.
Maleki, F. K., and Toygar, M.
E. (2019). The fracture behavior of sandwich composites with different core
densities and thickness subjected to mode I loading at different temperatures.
Materials Research Express, vol. 6, no. 4, DOI: 10.1088/2053-1591/aafc02
19.
Irven, G., Whitehouse, A.,
Carolan, D., Fergusson, A., and Dear, J. P. (2023). Toughening of face-sheet
core bonds in sandwich structures. Engineering Fracture Mechanics, vol. 290,
DOI: 10.1016/j.engfracmech.2023.109498
20.
de Moura, M. S. F. F., Moreira,
R. D. F., Rocha, R. J. B., and Oliveira, C. F. M. (2022). Determination of the
fracture energy under mode I loading of a honeycomb/carbon-epoxy sandwich panel
using the asymmetric double cantilever beam test. Journal of Sandwich
Structures & Materials, vol. 24, no. 6 , pp. 1977–1992, DOI:
10.1177/10996362221114906
21.
Lee, S. and Ji, W. (2022).
Measurement of pure mode I fracture toughness at a sandwich interface and
parametrization of the R-curve for a cohesive element. Composite Structures,
vol. 291, DOI: 10.1016/j.compstruct.2022.115599
22.
Lloyd’s-Register. (2021) Rules
for the Application of Sandwich Panel Construction to Ship Structure., Lloyd’s
Register
23.
Anderson, T. L. (2005).
Fracture Mechanics Fundamentals and Applications, 3rd ed., Taylor & Francis
24.
ASTM. (2013). ASTM D5528-13
Standard Test Method for Mode I Interlaminar Fracture Toughness of
Unidirectional Fiber-Reinforced Polymer Matrix Composites, vol. 13
25.
Irwin, G. R. (1970). Fracture
strength of relatively brittle structures and materials. Journal of the
Franklin Institute, vol. 290, no. 6, pp. 513-521, DOI:
10.1016/0016-0032(70)90234-6
26.
Siswanti, H., Zubaydi, A.,
Piscesa, B., Syahab, H., Ariesta, R.C. (2025). Study of polyurethane elastomer
cores interfacial fracture resistance of the sandwich materials for ship
structures. IOP Conf. Series: Earth and Environmental Science. 1461. pp.1-10.
doi:10.1088/1755-1315/1461/1/012005.