Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science

AN EXPERIMENTAL STUDY FOR DAMAGE CHARACTERIZATION OF POLYURETHANE STEEL SANDWICH PLATE UNDER MODE-I LOADing


DOI: 10.5937/jaes0-54570 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Heni Siswanti
Department of Ocean Engineering, Faculty of Marine Technology, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

Achmad Zubaydi*
Department of Naval Architecture, Faculty of Marine Technology, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

Bambang Piscesa
Department of Civil Engineering, Faculty of Civil, Planning, and Geo-Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

Husein Syahab
Department of Naval Architecture, Institut Teknologi Kalimantan, Balikpapan, Indonesia

Rizky Chandra Ariesta
Department of Naval Architecture, Faculty of Marine Technology, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

An experimental study is presented to characterize the face/core debonding on sandwich plate specimens under mode-I loading. The experiment was conducted with the specimens of an asymmetrical double cantilever beam (ADCB). Several specimens with different core thicknesses were analysed to estimate the strain energy release rate (SERR). The SERR of mode-I (GI) calculation uses two data reduction methods namely the Modified Beam Theory (MBT) and Compliance Calibration (CC) methods. The GI depicted on the R-Curve expresses the damage behaviour of the sandwich plates. The critical energy release rate (GIC) resulted of the MBT data reduction method produces a higher value than CC method, due to the differing assumptions between the two methods. The GIC value also correlates directly with the peak load value. The difference in sandwich plate thickness, particularly the core material thickness, does not significantly affect the damage behavior regarding the sandwich material's GIC value.

View article

The research leading to these results has received finan¬cial support from the “BPI-Beasiswa Penyelesaian Studi S3” of the Ministry of Education and Culture of The Republic of Indonesia

1.      SANDCORe, (2013). Best Practice Guide for Sandwich Structures in Marine Applications. University of Newcastle upon Tyne, New Castle.

2.      Ismail, A., Zubaydi, A., Piscesa, B and Panangian, E. (2021) A comparative study of conventional and sandwich plate side-shell using finite element method, IOP Conference Series: Materials Science ans Engineering, 2nd International Conference on Mechanical Engineering Research and Application (iCOMERA 2020), DOI: 10.1088/1757-899X/1034/1/012027

3.      Ismail, A., Zubaydi, A., Piscesa, B. and Tuswan (2021). Study of Sandwich Panel Application on Side Hull Of Crude Oil Tanker, Journal of Applied Engineering Science, 19(4), 1090-1098, DOI:10.5937/ jaes0-30373.

4.      Sujiatanti, S.H., Zubaydi, A., Budipriyanto, A. (2018). Finite Element Analysis of Ship Deck Sandwich Panel. Applied Mechanics and Materials, vol. 874, 134- 139, DOI: 10.4028/www.scientific.net/AMM.874.134

5.      Folie, G. M. (1971). The Behaviour and Analysis of Orthotropic Sandwich Plates, Building Science, vol. 6, pp. 57-67, DOI: 10.1016/0007-3628(71)90004-1

6.      Nordstrand, T., Carlsson, L. A. and Allen, H. G. (1994). Transverse shear stiffness of structural core sandwich. Composite Structures, vol. 27, pp. 317-329, DOI: 10.1016/0263-8223(94)90091-4

7.      Palomba, G., Epasto, G and Crupi, V. (2021). Lightweight sandwich structures for marine applications: a review. Mechanics of Advanced Materials and Structures, vol 29(26), pp.4839-4864, DOI:10.1080/15376494.2021.1941448

8.      Ariesta, R.C., Zubaydi, A., Ismail, A., Tuswan, T.. (20210 Damage evaluation of sandwich material on side plate hull using experimental modal analysis, Materials Today: Proceedings 47, pp. 2310-2314. DOI: 10.1016/j.matpr.2021.04.293.

9.      Zenkert, D. (2009). Damage Tolerance of Naval Sandwich Panels. Daniel, I. M.; Gdoutos, E. E.; Rajapakse, Y. D. S. (Eds), Major Accomplishments in Composite Materials and Sandwich Structures. Springer Dordrecht, pp 279–303.

10.   Rarani, M. H., Shokrieh, M. M. and Camanho, P. P. (2013). Finite element modelling of mode I delamination growth in laminated DCB specimens with R-curve effects. Composites Part B: Engineering, vol. 45 (1), pp. 897-903. DOI: 10.1016/j.compositesb.2012.09.051

11.   Ramji, A., Xu, Y., Yasaee, M. and Grasso, M. (2020) Delamination migration in CFRP laminates under mode I loading.  Composites Science and Technology, vol. 190, DOI: 10.1016/j.compscitech.2020.108067

12.   Chen, C. D. and Lai, W. L. (2020). The analysis of mode II strain energy release rate in a cracked sandwich beam based on the refined zigzag theory. Theoretical and Applied Fracture Mechanics, vol. 107, DOI: 10.1016/j.tafmec.2020.102504

13.   Moreira, R. D. F., de Moura, M. S. F. S., Rocha, R. J. B., and Oliveira, C. F. M. (2022). Mode II fracture caracterisation of a honeycomb/carbon-epoxy sandwich panel using the assymmetric end-notched flexure test. Journal of sandwich Structures & Materials, vol 24(7), DOI: 10.1177/10996362221118031

14.   Shokrieh, M. M., Zeinedini, A., and Ghoreishi, S. M. (2017). On the mixed mode I/II delamination R-curve of E-glass/epoxy laminated composites. Composites Structures, vol. 171, pp. 19-31. DOI: 10.1016/j.compstruct.2017.03.017

15.   Whitney, J. M., Browning, C. E.,  and Hoogsteden, W. (1982). A double cantilever beam test for characterizing mode I delamination of composite material. Journal Reinforced Plastics and Composites, vol. 1(4), pp. 297-313, DOI: 10.1177/073168448200100

16.   Aviles, F., and Carlsson, L. A. (2008). Analysis of the sandwich DCB specimen for debond characterization, Engineering Fracture Mechanics , vol. 75 (2), pp. 153-168, DOI: 10.1016/j.engfracmech.2007.03.045

17.   Ramantani, D. A., de Moura, M. F. S. F., Campilho, R. D. S. G., and Marques, A. T. (2010). Fracture characterization of sandwich structures interfaces under mode I loading. Composites Science and Technology, vo. 10(9), p. 1386–1394, DOI: 10.1016/j.compscitech.2010.04.018

18.   Maleki, F. K., and Toygar, M. E. (2019). The fracture behavior of sandwich composites with different core densities and thickness subjected to mode I loading at different temperatures. Materials Research Express, vol. 6, no. 4, DOI: 10.1088/2053-1591/aafc02

19.   Irven, G., Whitehouse, A., Carolan, D., Fergusson, A., and Dear, J. P. (2023). Toughening of face-sheet core bonds in sandwich structures. Engineering Fracture Mechanics, vol. 290, DOI: 10.1016/j.engfracmech.2023.109498

20.   de Moura, M. S. F. F., Moreira, R. D. F., Rocha, R. J. B., and Oliveira, C. F. M. (2022). Determination of the fracture energy under mode I loading of a honeycomb/carbon-epoxy sandwich panel using the asymmetric double cantilever beam test. Journal of Sandwich Structures & Materials, vol. 24, no. 6 , pp. 1977–1992, DOI: 10.1177/10996362221114906

21.   Lee, S. and Ji, W. (2022). Measurement of pure mode I fracture toughness at a sandwich interface and parametrization of the R-curve for a cohesive element. Composite Structures, vol. 291, DOI: 10.1016/j.compstruct.2022.115599

22.   Lloyd’s-Register. (2021) Rules for the Application of Sandwich Panel Construction to Ship Structure., Lloyd’s Register

23.   Anderson, T. L. (2005). Fracture Mechanics Fundamentals and Applications, 3rd ed., Taylor & Francis

24.   ASTM. (2013). ASTM D5528-13 Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites, vol. 13

25.   Irwin, G. R. (1970). Fracture strength of relatively brittle structures and materials. Journal of the Franklin Institute, vol. 290, no. 6, pp. 513-521, DOI: 10.1016/0016-0032(70)90234-6

26.   Siswanti, H., Zubaydi, A., Piscesa, B., Syahab, H., Ariesta, R.C. (2025). Study of polyurethane elastomer cores interfacial fracture resistance of the sandwich materials for ship structures. IOP Conf. Series: Earth and Environmental Science. 1461. pp.1-10. doi:10.1088/1755-1315/1461/1/012005.