Istrazivanja i projektovanja za privreduJournal of Applied Engineering Science

COMPUTATIONAL ANALYSIS OF HIP PROSTHESIS: IMPACT OF SHAPE AND MATERIAL ON MECHANICAL PERFORMANCE


DOI: 10.5937/jaes0-55883 
This is an open access article distributed under the CC BY 4.0
Creative Commons License

Nishant Nikam
Aeronautical & Automobile Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Karnataka, India

Satish Shenoy B
Aeronautical & Automobile Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Karnataka, India

Laxmikant G Keni
Aeronautical & Automobile Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Karnataka, India

Sawan Shetty
Mechanical & Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Karnataka, India

Shyamasunder Bhat N
Department of Orthopedics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Karnataka, India

Chethan K N
Aeronautical & Automobile Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Karnataka, India

Hip implants play a crucial role in restoring mobility and reducing pain in patients with hip joint disorders. The design and material selection of the implant stem significantly influence its mechanical performance and longevity. This study presents a comparative finite element analysis of circular and rectangular hip implant stems to evaluate their structural behavior under static loading conditions. The implant stems were modeled using CREO 11.0 and analyzed using Ansys 2023 R2, with a load of 2300 N applied to simulate real-world conditions. Two materials—Cobalt Chromium (CoCr) and Ti–6Al–4V alloys—were considered to assess their mechanical properties. The results indicate that rectangular stems exhibited lower total deformation, von Mises stress, and strain compared to circular stems, making them structurally superior. Among the materials analyzed, CoCr demonstrated better mechanical performance, reducing stress concentration and potential failure risks. Additionally, metal-on-metal (MoM) configurations showed enhanced durability over metal-on-polyethylene (MoPE). These findings suggest that a rectangular CoCr stem in a MoM configuration is optimal for improving implant longevity and reducing revision surgery rates. The study underscores the importance of optimized implant geometry and material selection in total hip arthroplasty. Future research should explore dynamic loading conditions and patient-specific implant designs to enhance clinical outcomes further.

View article

The authors would like to thank the Department of Aeronautical and Automobile Engineering, Manipal Institute of Technology, Manipal Academy, Manipal for the computing resources provided to carry out this research work.

1.      A.T. Alpkaya, M. Yılmaz, A.M. Şahin, D.Ş. Mihçin, Investigation of stair ascending and descending activities on the lifespan of hip implants, Med. Eng. Phys. 126 (2024). https://doi.org/10.1016/j.medengphy.2024.104142.

2.      S. Mihcin, A.M. Sahin, M. Yilmaz, A.T. Alpkaya, M. Tuna, S. Akdeniz, N.C. Korkmaz, A. Tosun, S. Sahin, Database covering the prayer movements which were not available previously, Sci. Data 10 (2023) 1–15. https://doi.org/10.1038/s41597-023-02196-x.

3.      F.C. Chang, J.P. Hung, Y.L. Lai, Finite element analysis on the mechanical effect of a roughened stem for cemented hip prosthesis, 2009 WRI World Congr. Comput. Sci. Inf. Eng. CSIE 2009 3 (2009) 254–258. https://doi.org/10.1109/CSIE.2009.931.

4.      K. Chalernpon, P. Aroonjarattham, K. Aroonjarattham, Static and Dynamic Load on Hip Contact of Hip Prosthesis and Thai Femoral Bones, Int. J. Mech. Mechatronics Eng. 9 (2015) 11–15.

5.      D. Dowson, New joints for the Millennium: Wear control in total replacement hip joints, Proc. Inst. Mech. Eng. Part H J. Eng. Med. 215 (2001) 335–358. https://doi.org/10.1243/0954411011535939.

6.      X. Hua, J. Li, L. Wang, Z. Jin, R. Wilcox, J. Fisher, Contact mechanics of modular metal-on-polyethylene total hip replacement under adverse edge loading conditions, J. Biomech. 47 (2014) 3303–3309. https://doi.org/10.1016/j.jbiomech.2014.08.015.

7.      J.V. Corda, K.N. Chethan, B. Satish Shenoy, S. Shetty, N. Shyamasunder Bhat, M. Zuber, Fatigue Life Evaluation of Different Hip Implant Designs Using Finite Element Analysis, J. Appl. Eng. Sci. 21 (2023) 896–907. https://doi.org/10.5937/jaes0-44094.

8.      M.F.D. Emre Celik1, Furkan Alemdar1, Murat Bati1,  and ¸Senay M. Onur Alp Buyukbayraktar1, K. N. Chethan2, Mustafa Kara1, Mechanical Investigation for the Use of Polylactic Acid in Total Hip Arthroplasty Using FEM Analysis, in: 2022: p. 174.

9.      J. Girard, Femoral head diameter considerations for primary total hip arthroplasty, Orthop. Traumatol. Surg. Res. 101 (2015) S25–S29. https://doi.org/10.1016/j.otsr.2014.07.026.

10.   A.T. Alpkaya, Ş. Mihçin, The Computational Approach to Predicting Wear: Comparison of Wear Performance of CFR-PEEK and XLPE Liners in Total Hip Replacement, Tribol. Trans. 66 (2023) 59–72. https://doi.org/10.1080/10402004.2022.2140727.

11.   Ş. Mihçin, S. Ciklacandir, TOWARDS INTEGRATION OF THE FINITE ELEMENT MODELING TECHNIQUE INTO BIOMEDICAL ENGINEERING EDUCATION, Biomed. Eng. Appl. Basis Commun. 34 (2022). https://doi.org/10.4015/S101623722150054X.

12.   Z. Horak, P. Kubovy, J. Horakova, Does mechanical loading influence development of osteoarthritis in hip joint?, Comput. Methods Biomech. Biomed. Engin. 14 (2011) 263–264. https://doi.org/10.1080/10255842.2011.595227.

13.   M. Dharme, A. Kuthe, Effect of geometric parameters in the design of customized hip implants, J. Med. Eng. Technol. 41 (2017) 429–436. https://doi.org/10.1080/03091902.2017.1323967.

14.   G. Bergmann, A. Bender, J. Dymke, G. Duda, P. Damm, Standardized loads acting in hip implants, PLoS One 11 (2016) 1–23. https://doi.org/10.1371/journal.pone.0155612.

15.   G.P. Crean, Surgical Technique, Br. Med. J. 1 (1956) 1172. https://doi.org/10.1136/bmj.1.4976.1172-a.

16.   J. Reginald, M. Kalayarasan, K.N. Chethan, P. Dhanabal, Static, dynamic, and fatigue life investigation of a hip prosthesis for walking gait using finite element analysis, Int. J. Model. Simul. 43 (2023) 797–811. https://doi.org/10.1080/02286203.2023.2212346.

17.   H. Göktaş, E. Subaşi, M. Uzkut, M. Kara, H. Biçici, H. Shirazi, K.N. Chethan, Ş. Mihçin, Optimization of Hip Implant Designs Based on Its Mechanical Behaviour, in: 2022: pp. 37–43. https://doi.org/10.1007/978-3-030-86297-8_4.

18.   J.V. Corda, C. K N, S. Bhat N, S. Shetty, S. Shenoy B, M. Zuber, Finite element analysis of elliptical shaped stem profile of hip prosthesis using dynamic loading conditions, Biomed. Phys. & Eng. Express 9 (2023) 65028. https://doi.org/10.1088/2057-1976/acfe14.

19.   A.T. Alpkaya, S. Mihcin, Sensitivity Analysis of Wear on Metal-On-Metal Bearing Couples via Verification of Numeric and Analytic Methods, Hittite J. Sci. Eng. 11 (2024) 57–67. https://doi.org/10.17350/hjse19030000332.

20.   Chethan.K.N, M. Zuber, S. Bhat N, S. Shenoy B, Optimized trapezoidal-shaped hip implant for total hip arthroplasty using finite element analysis, Cogent Eng. 7 (2020). https://doi.org/10.1080/23311916.2020.1719575.

21.   ASTM, F 2996-20 Standard Practice for Finite Element Analysis ( FEA ) of Non-Modular Metallic Orthopaedic Hip Femoral Stems, ASTM Int. Conshohocken, PA, Www.Astm.Org (2020) 1–11. https://doi.org/10.1520/F2996-13.2.

22.   S.M. Darwish, A.M. Al-Samhan, Optimization of artificial hip joint parameters, Materwiss. Werksttech. 40 (2009) 218–223. https://doi.org/10.1002/mawe.200900430.

23.   H. bo Jiang, Static and Dynamic Mechanics Analysis on Artificial Hip Joints with Different Interface Designs by the Finite Element Method, J. Bionic Eng. 4 (2007) 123–131. https://doi.org/10.1016/S1672-6529(07)60024-9.

24.   K. Colic, A. Sedmak, A. Grbovic, U. Tatic, S. Sedmak, B. Djordjevic, Finite element modeling of hip implant static loading, Procedia Eng. 149 (2016) 257–262. https://doi.org/10.1016/j.proeng.2016.06.664.

25.   K.N. Chethan, N. Shyamasunder Bhat, M. Zuber, B. Satish Shenoy, Finite element analysis of different hip implant designs along with femur under static loading conditions, J. Biomed. Phys. Eng. 9 (2019) 507–516.

26.   L. Wang, X. Peng, C. Sun, H. Wang, D. Li, J. Zhu, Z. Jin, S. Mihcin, C. Liu, THE DETERMINATION of the VOLUMETRIC WEAR for SURGICALLY RETRIEVED HIP IMPLANTS BASED on CMM, J. Mech. Med. Biol. 16 (2016) 1–13. https://doi.org/10.1142/S0219519416500597.

27.   T. Joshi, R. Sharma, V.K. Mittal, V. Gupta, G. Krishan, Dynamic Analysis of Hip Prosthesis Using Different Biocompatible Alloys, ASME Open J. Eng. 1 (2022). https://doi.org/10.1115/1.4053417.