Hip implants play a crucial role in restoring mobility and reducing pain in patients with hip joint disorders. The design and material selection of the implant stem significantly influence its mechanical performance and longevity. This study presents a comparative finite element analysis of circular and rectangular hip implant stems to evaluate their structural behavior under static loading conditions. The implant stems were modeled using CREO 11.0 and analyzed using Ansys 2023 R2, with a load of 2300 N applied to simulate real-world conditions. Two materials—Cobalt Chromium (CoCr) and Ti–6Al–4V alloys—were considered to assess their mechanical properties. The results indicate that rectangular stems exhibited lower total deformation, von Mises stress, and strain compared to circular stems, making them structurally superior. Among the materials analyzed, CoCr demonstrated better mechanical performance, reducing stress concentration and potential failure risks. Additionally, metal-on-metal (MoM) configurations showed enhanced durability over metal-on-polyethylene (MoPE). These findings suggest that a rectangular CoCr stem in a MoM configuration is optimal for improving implant longevity and reducing revision surgery rates. The study underscores the importance of optimized implant geometry and material selection in total hip arthroplasty. Future research should explore dynamic loading conditions and patient-specific implant designs to enhance clinical outcomes further.
The authors would like to thank the Department of Aeronautical and Automobile Engineering, Manipal Institute of Technology, Manipal Academy, Manipal for the computing resources provided to carry out this research work.
1.
A.T. Alpkaya, M. Yılmaz, A.M. Şahin,
D.Ş. Mihçin, Investigation of stair ascending and descending activities on the
lifespan of hip implants, Med. Eng. Phys. 126 (2024).
https://doi.org/10.1016/j.medengphy.2024.104142.
2.
S.
Mihcin, A.M. Sahin, M. Yilmaz, A.T. Alpkaya, M. Tuna, S. Akdeniz, N.C. Korkmaz,
A. Tosun, S. Sahin, Database covering the prayer movements which were not
available previously, Sci. Data 10 (2023) 1–15.
https://doi.org/10.1038/s41597-023-02196-x.
3.
F.C.
Chang, J.P. Hung, Y.L. Lai, Finite element analysis on the mechanical effect of
a roughened stem for cemented hip prosthesis, 2009 WRI World Congr. Comput.
Sci. Inf. Eng. CSIE 2009 3 (2009) 254–258.
https://doi.org/10.1109/CSIE.2009.931.
4.
K.
Chalernpon, P. Aroonjarattham, K. Aroonjarattham, Static and Dynamic Load on
Hip Contact of Hip Prosthesis and Thai Femoral Bones, Int. J. Mech.
Mechatronics Eng. 9 (2015) 11–15.
5.
D.
Dowson, New joints for the Millennium: Wear control in total replacement hip
joints, Proc. Inst. Mech. Eng. Part H J. Eng. Med. 215 (2001) 335–358.
https://doi.org/10.1243/0954411011535939.
6.
X.
Hua, J. Li, L. Wang, Z. Jin, R. Wilcox, J. Fisher, Contact mechanics of modular
metal-on-polyethylene total hip replacement under adverse edge loading
conditions, J. Biomech. 47 (2014) 3303–3309.
https://doi.org/10.1016/j.jbiomech.2014.08.015.
7.
J.V.
Corda, K.N. Chethan, B. Satish Shenoy, S. Shetty, N. Shyamasunder Bhat, M.
Zuber, Fatigue Life Evaluation of Different Hip Implant Designs Using Finite
Element Analysis, J. Appl. Eng. Sci. 21 (2023) 896–907.
https://doi.org/10.5937/jaes0-44094.
8.
M.F.D.
Emre Celik1, Furkan Alemdar1, Murat Bati1,
and ¸Senay M. Onur Alp Buyukbayraktar1, K. N. Chethan2, Mustafa Kara1,
Mechanical Investigation for the Use of Polylactic Acid in Total Hip
Arthroplasty Using FEM Analysis, in: 2022: p. 174.
9.
J.
Girard, Femoral head diameter considerations for primary total hip
arthroplasty, Orthop. Traumatol. Surg. Res. 101 (2015) S25–S29.
https://doi.org/10.1016/j.otsr.2014.07.026.
10.
A.T.
Alpkaya, Ş. Mihçin, The Computational Approach to Predicting Wear: Comparison
of Wear Performance of CFR-PEEK and XLPE Liners in Total Hip Replacement,
Tribol. Trans. 66 (2023) 59–72. https://doi.org/10.1080/10402004.2022.2140727.
11.
Ş.
Mihçin, S. Ciklacandir, TOWARDS INTEGRATION OF THE FINITE ELEMENT MODELING
TECHNIQUE INTO BIOMEDICAL ENGINEERING EDUCATION, Biomed. Eng. Appl. Basis
Commun. 34 (2022). https://doi.org/10.4015/S101623722150054X.
12.
Z.
Horak, P. Kubovy, J. Horakova, Does mechanical loading influence development of
osteoarthritis in hip joint?, Comput. Methods Biomech. Biomed. Engin. 14 (2011)
263–264. https://doi.org/10.1080/10255842.2011.595227.
13.
M.
Dharme, A. Kuthe, Effect of geometric parameters in the design of customized
hip implants, J. Med. Eng. Technol. 41 (2017) 429–436.
https://doi.org/10.1080/03091902.2017.1323967.
14.
G.
Bergmann, A. Bender, J. Dymke, G. Duda, P. Damm, Standardized loads acting in
hip implants, PLoS One 11 (2016) 1–23.
https://doi.org/10.1371/journal.pone.0155612.
15.
G.P.
Crean, Surgical Technique, Br. Med. J. 1 (1956) 1172.
https://doi.org/10.1136/bmj.1.4976.1172-a.
16.
J.
Reginald, M. Kalayarasan, K.N. Chethan, P. Dhanabal, Static, dynamic, and
fatigue life investigation of a hip prosthesis for walking gait using finite
element analysis, Int. J. Model. Simul. 43 (2023) 797–811.
https://doi.org/10.1080/02286203.2023.2212346.
17.
H.
Göktaş, E. Subaşi, M. Uzkut, M. Kara, H. Biçici, H. Shirazi, K.N. Chethan, Ş.
Mihçin, Optimization of Hip Implant Designs Based on Its Mechanical Behaviour,
in: 2022: pp. 37–43. https://doi.org/10.1007/978-3-030-86297-8_4.
18.
J.V.
Corda, C. K N, S. Bhat N, S. Shetty, S. Shenoy B, M. Zuber, Finite element
analysis of elliptical shaped stem profile of hip prosthesis using dynamic
loading conditions, Biomed. Phys. & Eng. Express 9 (2023) 65028.
https://doi.org/10.1088/2057-1976/acfe14.
19.
A.T.
Alpkaya, S. Mihcin, Sensitivity Analysis of Wear on Metal-On-Metal Bearing
Couples via Verification of Numeric and Analytic Methods, Hittite J. Sci. Eng.
11 (2024) 57–67. https://doi.org/10.17350/hjse19030000332.
20.
Chethan.K.N,
M. Zuber, S. Bhat N, S. Shenoy B, Optimized trapezoidal-shaped hip implant for
total hip arthroplasty using finite element analysis, Cogent Eng. 7 (2020).
https://doi.org/10.1080/23311916.2020.1719575.
21.
ASTM,
F 2996-20 Standard Practice for Finite Element Analysis ( FEA ) of Non-Modular
Metallic Orthopaedic Hip Femoral Stems, ASTM Int. Conshohocken, PA,
Www.Astm.Org (2020) 1–11. https://doi.org/10.1520/F2996-13.2.
22.
S.M.
Darwish, A.M. Al-Samhan, Optimization of artificial hip joint parameters,
Materwiss. Werksttech. 40 (2009) 218–223.
https://doi.org/10.1002/mawe.200900430.
23.
H. bo
Jiang, Static and Dynamic Mechanics Analysis on Artificial Hip Joints with
Different Interface Designs by the Finite Element Method, J. Bionic Eng. 4
(2007) 123–131. https://doi.org/10.1016/S1672-6529(07)60024-9.
24.
K.
Colic, A. Sedmak, A. Grbovic, U. Tatic, S. Sedmak, B. Djordjevic, Finite
element modeling of hip implant static loading, Procedia Eng. 149 (2016)
257–262. https://doi.org/10.1016/j.proeng.2016.06.664.
25.
K.N.
Chethan, N. Shyamasunder Bhat, M. Zuber, B. Satish Shenoy, Finite element
analysis of different hip implant designs along with femur under static loading
conditions, J. Biomed. Phys. Eng. 9 (2019) 507–516.
26.
L.
Wang, X. Peng, C. Sun, H. Wang, D. Li, J. Zhu, Z. Jin, S. Mihcin, C. Liu, THE
DETERMINATION of the VOLUMETRIC WEAR for SURGICALLY RETRIEVED HIP IMPLANTS
BASED on CMM, J. Mech. Med. Biol. 16 (2016) 1–13.
https://doi.org/10.1142/S0219519416500597.
27.
T.
Joshi, R. Sharma, V.K. Mittal, V. Gupta, G. Krishan, Dynamic Analysis of Hip
Prosthesis Using Different Biocompatible Alloys, ASME Open J. Eng. 1 (2022).
https://doi.org/10.1115/1.4053417.