
239* The Mirce Akademy, Woodbury Park, Exeter, EX5 1JJ, United Kingdom;

 jk@mirceakademy.com

Paper number: 14(2016)2, 376, 239 - 247 doi:10.5937/jaes14-10931

DEVELOPING SELF-MODIFYING CODE MODEL
Goran Đurić
University of Belgrade, Faculty of Mechanical Engineering, Belgrade, Serbia

Časlav Mitrović
University of Belgrade, Faculty of Mechanical Engineering, Belgrade, Serbia

Goran Vorotović
University of Belgrade, Faculty of Mechanical Engineering, Belgrade, Serbia

Ivan Blagojević
University of Belgrade, Faculty of Mechanical Engineering, Belgrade, Serbia

Miloš Vasić
University of Belgrade, Faculty of Mechanical Engineering, Belgrade, Serbia

This paper presents the technology of constructing and linearization of binary program utilized for

program generation, analysis and transformation into a self-modifying code. An example model of

the self-modifying software system and its experimental application in vehicle control have been

presented in this paper. The module responsible for vehicle control comprising two subsystems has

been created within the simulation software. The first subsystem has emerged through the classical

software process developed by a human-programmer. The second subsystem has been created as

a result of a separate piece of software substituting the part of a programmer in a software process

part. The result of this approach is software creation in conjunction with natural and Artificial Intel-

ligence in addition to experimental integration into the vehicle control system.

Keywords: Compliant Mechanisms, Kinematics-based Approach, Structural Optimization Approach

INTRODUCTION

A Self-modifying code, program or software are
different names used in order to describe soft-
ware systems having the property to change inde-
pendently in some form. The self-modifying code
has a long history. In one of its first applications, it
was used as a way of hiding instructions for copy
protection. Key commands were not visible in the
code. Neither did they “appear” in working memo-
ry at the moment of carrying out a program. In his
famous text, published in Scientific American in
1984, Dewdney presents “core wars” simulation
[1] in which two opposing programs sharing the
same memory space are trying to disable each
other by utilizing peek and poke commands, i.e.
by alternating reading and writing on arbitrary
memory locations, followed by attempts at pre-
serving integrity of each individual code by means
of allocating and repairing code parts.

The self-modifying code makes an analysis dif-
ficult thereby preventing the unwanted reversible
engineering [2]. Computer viruses, for instance,
try to hide their internal structure and the rec-
ognizable signature by utilizing the self-modify-

ing code. The self-modifying code should not be
confused with “at the moment of execution” gen-
erated code used by the Java Virtual Machine,
for example. The reason for applying the self-
modifying code can be also the limited working
memory space or the required resistivity to fail-
ure that was the case in designing the operating
system for the Space Shuttle program [3].

The software self-modification can be a solution
even in cases when the unpredictable environ-
ment change is expected and required during
the execution. Such software system that has
the possibility to adapt to changes represents
a type of Artificial Intelligence. Artificial neural
networks represent one of the most popular AI
technologies. They are most frequently used for
systems having complex and conditioned char-
acteristics, and where the solution cannot be
explicitly defined. One of the important proper-
ties of neural networks is the capability to learn.
Genetic Programming (GP) as an aspect of au
tomatic programming is particularly interesting
to us. In AI, GP is a methodology of finding a
computer program that solves certain task, and
is based on genetic algorithm.

Original Scientific Paper

Journal of Applied Engineering Science 14(2016)2 240

Goran Đurić-Developing self-modfying

code model

The greatest contribution to the development
and application of GP in the field of diverse prob-
lems was provided by John R. Koza [4]. The ba-
sic difference between a genetic algorithm and
GP lies in the way of representing solution, in
which case the genetic algorithm creates a se-
ries of signs as a solution, whereas GP creates
a computer program as its solution. Essentially,
this is a situation in which a computer program
programs a computer program.

This paper presents a model of self-modifying
software system and the experimental applica-
tion of the model in the domain of vehicle control
in simulation.

Softver process model

A software process, or a process of creating soft-
ware, is a set of activities the aim of which is soft-
ware development. The international standard
ISO/IEC 12207 [5] establishes the general work-
ing framework and describes software life cycle
processes. This standard can be implemented
also in cases when a piece of software is regard-
ed as an independent entity or when it is an in-
tegral part of a larger system. A large number of
software process models have emerged through
software engineering development. A software
process model is an idealized layout of software
process, that is, an abstract representation of
such a process. The most famous models of
software processes are classical phase – water-
fall model, iterative model, V model, prototypes,
spiral model etc. Three phases are usually no-
ticed, these being: analysis phase wherein the
domain is being analyzed, design phase wherein
the solution is designed, and the implementation
phase in which a concrete software solution is
created and applied. Sommerville [6] considers
that each software process has the following
phases: specification – defining what a system
should do, design and implementation – defin-
ing the system organization and system imple-
mentation, validation – checking out whether a
solution is what has been required it to be, and
evolution – changing the solution in accordance
with new requirements.

In Figure 1, we propose a spiral model version of
the software process with the aim of introducing
AI in the software creation process. This software
process model implies minimizing the human role
in a process part that keeps repeating in a spiral
with the idea of constant automated redesign and

Figure 1: The observed model of a software process

implementation. Such a model entails the need
for intelligent software that should participate in
design phases, implementation and evaluation
of the target software solution. The complex soft-
ware system comprising thus defined intelligent
development software and tightly connected tar-
get executable software can be regarded also as
the self-modifying software system.

The described intelligent development software
has been labeled as Movens (In Latin: a starting
device, the one that initiates moving). Movens
creates an autonomous software solution based
on the input information, initial logical model solu-
tion and the accumulated experience. It partially
takes part of a software designer and program-
mer. The ultimate aim of the Movens operation is
to create the autonomous software solution that
is nearer to the stated goal by repeating its ac-
tivity cycle through multiple iterations. Thus cre-
ated solution will have the equal operation speed
in its operation, as would be the case for the one
created by classical means.

The Movens model provides for a significant role
of intelligent development software and precise
work distribution with the human being in the soft-
ware development process. As a consequence,
there appears to be a module for performing
diverse tasks in development phases, as is the
case with, for example, a module for coding into

Journal of Applied Engineering Science 14(2016)2 241

Goran Đurić-Developing self-modfying

code model

Figure 2: Modification algorithm

Figure 3: TORCS visualization

a pseudo-code, a module for converting a pseu-
do-code into a concrete programming language
and the like...

At a higher level, at the level of logical design
solution, Movens could make use of UML dia-
grams [7] for writing the domain model and de-
veloping solution model. The basis of this model
contains an idea of a modified software solution
aimed at achieving the goal and the best solu-
tion. The proposed general modification algo-
rithm is shown in Figure 2. In the most general
case, three or more nested modification levels
are provided for, or more precisely: the logical
modification, implementation modification and
parameter modification.

The application to developing softvare for
vihicle control wihin thesimulation softvere

In this paper, we applied the described approach
to software creation to an example of realization
of vehicle control software. For the purpose of
this paper, we used the TORCS (The Open Rac-
ing Car Simulator) [8], a software simulator of
car races. More precisely, it is the open-source
multiplatform software written in C++ program-
ming language. It is used in different scientific
and research projects in addition to academic
instruction at faculties. It provides quality visu-
alization (Fig. 3), but is not supposed to be an
alternative to commercial entertainment pro-
grams. It represents a framework for research
and comparison of diverse solutions based on
Artificial and Computer Intelligence.

The simulation vehicle can be automatically
controlled by a selected software controller. The
controller is implemented as a software mod-
ule that is programmed separately and simply
installed in the simulation. The basic applica-
tion during the execution of each step of a work
cycle enables the controller to access the data
on the current simulation condition, the data on
vehicle condition, path and other vehicles, and

after the internal analysis and decision process-
es and the ability to carry out vehicle control.

The controller perceives the current simulation
condition by means of reading the simulated
sensor values. The most important pieces of in-
formation are obtained from the distance sensor
set. There are 36 defined distance sensors from
other vehicles (i.e. opponents), which are uni-
formly distributed 10 degrees each in the circular
area around a vehicle. Additionally, 19 distance
sensors are provided from the track boundaries
that are distributed at 90,75,60,45,30,20,15,10,5
and 0 degrees to the left and to the right in re-
lation to the vehicle motion direction taking into
account also the vehicle motion course. Each
sensor has the maximum scope comprising 200
meters. There are sensors of vehicle lateral de-
viation from the mean path, the angle sensor
forming a vehicle in relation to the path axes
and the sensor indicating the distance from the
path start. The information on the current vehicle
gear movement, the vehicle motion speed, and
engine revolution. In contrast to simulated sen-
sors, in addition to enabling the reading of the
current condition the provided simulated actua-
tors make possible direct value change thereby
enabling vehicle control. These are acceleration
actuators (accel) that simulate the regulator of
„gas“ engine revolutions per minute the value of
which can range from 0 to 1, brake actuator that
simulates brake pedal and can have the value
ranging from 0 to 1, steer actuator simulating the
control wheel i.e. “the steering wheel” of a vehi-
cle can have values ranging from -1 to 1, where
-1 indicates the leftmost, and 1 the rightmost po-
sitions and the gear change actuator simulating

Journal of Applied Engineering Science 14(2016)2 242

Figure 4: Controller and Movens

the vehicle gearshift and can have the values: -
1,0,1,2,3,4,5 and 6. The improvement developed
by Loiaconno [9] enabled the client-server archi-
tecture for TORCS thereby separating physically
the controller entirely from the basic application
and enabling the controller development in an
arbitrary programming language.

The Movens model of software development was
applied in the part of vehicle software controller
that refers to the vehicle gearshift control (Fig-
ure 4.). This was enabled by controller functional
distribution into two software components. The
controller part aimed at controlling other vehicle
controls was used solely as a basic code provid-
ing for vehicle movement from the beginning to
the end of the defined path [10].

In the paper by E. Onieva et al. [11], the mod-
ular structure of a software controller was also
proposed. These are the modules responsible
for transmission rate change, acceleration and
brake processes, determining the desired speed,
steering wheel control and a module for other
vehicles. Gearshift module implements simple
operation rules based on the steadily defined
table the basic parameter of which is the engine
revolutions per minute. In the paper by T.S.Kim
et al., the methods of evolutionary strategy are
used for optimization of the autonomous ve-
hicle controller [12]. The propose parameter set
optimization used by the previously developed
controller. Shichel and Sipper utilize genetic pro-
gramming in order to develop their vehicle con-
troller [13]. They use GP in order to bring about
the Lisp population evolution of an expression
(Lisp being a programming language). The con-

troller is governed by means of two Lisp expres-
sions, one being a speed actuator, the other
being turn actuator. Similarly, Ebner and Tiede
develop their own vehicle controller [14] utilizing
GP with a program represented in the form of a
tree. In essence, their controller has two gener-
ated symbolic expression that enable the con-
trol of turning and accelerating/slowing down of
a vehicle. They used the famous Evolutionary
Computation in Java package (ECJ). The opti-
mization of transmission rate change is in the fo-
cus of the paper put forward by A.P.Becher and
C.Stoean [15]. The authors find optimum values
for the engine rpm number as the basis for the
table of transmission rate change by utilizing the
familiar heuristic optimization algorithms, firstly
the bottom-up algorithm and then the simulated
development algorithm.

In our solution, we imposed the requirement
for the gearshift control that based on the input
parameters, such as current vehicle movement
speed and the gearshift transmission rate, it
should determine the new transmission rate as
its output. The process of making this decision
can be represented in the form of binary decision
tree that can be transformed into a programming
code. Given the fact that our newly proposed
model of software development provides for au-
tomatic solution creating and modification, we
applied GP for the procedure of solution finding
(Figure 5). It is generic programming that enables
us to search the plausible program space and
find the programs that solve well the set task.

Within the tree that represents the only possible
solution, the nodes can be internal and external.

Goran Đurić-Developing self-modfying

code model

Journal of Applied Engineering Science 14(2016)2 243

Figure 5: The applied GP algorithm

In this case, the internal nodes represent the
logical function – a question, and the external
nodes that are terminal nodes as well, represent
the operation of assigning a value to the output
parameter. The procedure of generating the ini-

tial population uses the growing method of gen-
erating tree. The method starts with the random
node generation without limiting the tree depth,
and with limited maximum node number.

The initial node – the root, must be the function
so as not to reduce the tree to a single node. Tree
generation ends also in the case when there are
no free internal nodes.

These rules lead to generating diverse tree
forms and different tree sizes (Figure 6). The
initial population was formed by 100 randomly
generated units.

Goran Đurić-Developing self-modfying

code model

Journal of Applied Engineering Science 14(2016)2 244

Figure 6: The display of randomly generated tree

Figure 7: The unit in the form of C code

Measuring fitness – unit grading is realized by
means of the real test of the formed program op-
eration in the simulator session. First of all, the
unit should be filled in by randomly generated
constants (i.e. ephemeral random constant).
This issue was resolved by forming the set of
64 unit versions with different constants. Each
formed unit with these parameters, represented
in the form of C code (Figure 7) is being inserted
into the vehicle controller design for TORCS.
The newly formed controller is the tested in the
batch defined simulator session accompanied
by memorizing the defined telemetric data. The
data are memorized within the XML file [16] for
subsequent processing. The basic parameter for

unit grading is the time necessary to carry out
the assigned drive. The units with shorter time of
simulation execution are given better grades.

As a criterion of process finalization, we estab-
lished the creation of 100 population generations.
In order to form a new generation, we used the
method of generation selection wherein the best
units are selected as the basis for a new genera-
tion. Evolution parameters determining the rules
according to which the GP procedure is being
carried out are defined as fixed ones in this case.
The reproduction is applied to 30% of population

by repeating the tournament selection of three

units until the necessary unit numbers trans-

Goran Đurić-Developing self-modfying

code model

Journal of Applied Engineering Science 14(2016)2 245

Figure 9: the control application Movens-GP

ferred into a new generation without changes
have not been provided. The crossbreeding
is applied during the creation of 50% of new

units of a new generation. The crossbreeding

of two units generates two descendants in such

a way that they mutually change the sub-trees

out of the given internal node. The mutation is

applied for creating 10% of the population. The

randomly selected unit and randomly selected

node become the place where the sub-tree is

being erased, and instead of it, a new sub-tree

is formed by the same procedure. The last 10%

of the new generation is formed by creating ut-

terly new units. The new generation thus formed

re-enters the testing and grading processes.

The complete described procedure is carried

out automatically, controlled by a separate C#

control application (Figure 9) specially written for

the purpose of this paper. There are two major

functionality groups within this application. The

one provides the basic operation framework for

genetic programming, and the other one enables

controlling the external creation control and con-

trolling the test executive programs that emerge

as a result of genetic programming.

TESTING IMPLEMENTATION

In the simulation software TORCS, a great se-

lection of over 30 pre-defined paths were offered

in order to test controllers. It is possible to select

around 42 offered vehicle models. As a task for

fitness grading of each controller specimen, we

set up vehicle control from the beginning to the

end of the path labeled as “e-track-4” the length

of which totals 7042m. We did not place any oth-

er vehicles or obstacles of other sort preventing

vehicle movement in the simulated environment,

except for the form of the above stated path.

Although simulation software has the ability to

operate in the client-server manner mode, we

implemented the basic movement form and

control switching. This means that each control-

ler specimen was independently compiled and

loaded as a separate module during the simula-

tion execution. We did not use the possibility to

access data on path that the basic application

has in the course of execution. The controller

independently provided memorizing telemetric

data (Figure 8 and Figure 9), out of which we

actively used primarily the spent time for path

covering in this experiment.

It was initially envisaged that formation of 100

program population generations should be car-

ried out. However, since the best result, reached

in the 24th generation, had stopped further en-

hancement, the further process was interrupted

by the definitive 30th generation that can be

seen in the Table 1. We are of the opinion that

the most appropriate time per generation was

constantly improved due to direct reproduction

of 30% of each generation.

Goran Đurić-Developing self-modfying

code model

Journal of Applied Engineering Science 14(2016)2

Table 1: Fitness statistics

Gen. the best
time

average
time

Gen. the best
time

average
time

Gen. the best
time

average
time

1 220,55 248,5 11 149,78 175,66 21 147,5 162,77

2 212,25 220,76 12 149,78 177,89 22 147,5 160,87

3 205,25 215,5 13 147,8 178,52 23 147,27 164,85

4 205,25 220,97 14 147,8 180,89 24 147,25 160,12

5 187,5 200,99 15 147,8 175,22 25 147,25 160,15

6 160,45 200,58 16 147,75 170,86 26 147,25 159,99

7 149,88 170,87 17 147,7 170,85 27 147,25 159,9

8 149,88 169,57 18 147,66 169,58 28 147,25 160,98

9 149,88 168,5 19 147,6 160,57 29 147,25 159,86

10 149,88 175,89 20 147,5 161,55 30 147,25 159,81

246

Figure 8: XML file with the simulation data

Figure 9: Telemetric data memorized by a controller

The best-realized time, achieved by a control-
ler specimen equals 147,25s. This is the result
we approximately succeeded in achieving by di-
rect vehicle control instead of automatic control.
The average time of the first (random) control-
ler generation totaled 248,50s, so that the ratio
of the best-achieved time and the average zero
generation equaled 1,69. Obviously, there was
significant improvement of generated controllers
through the evolution process.

Testing was carried out by means of the computer
with Intel i7 4Ghz processor, in script mode with-
out graphic display. The total of 153600 generat-
ed code cycles, compiling and simulation execu-
tion (24 generations x 100 units x 64 parameter
sets) were realized, which lasted approximately
8 days, 20 hours and 10 minutes. The approxi-
mate time necessary for one test comprised
4,97s if other less demanding programming op-
erations were not taken into consideration. This
indicates high computing requirement of genetic
programming procedure carried out in this man-
ner.

CONCLUSION AND FURTHER PLANS

The new proposed model of self-modifying soft-
ware system in this simple example have shown
the potential for application and further develop-
ment. Self-modification as a method envisaged by
the Movens model was in this case provided by im-
plementing the genetic programming procedure.

In experiment with using these or similar simu-
lators, client-server operation mode should be
utilized in order to enable solution coding in a
programming language that is being interpreted.
Thus, the operation cycle would be significantly
accelerated. In certain future experiments con-
cerning the same domain and task, the logic of a
module that is developed by AI methods can be
expanded into more complex parameter set.

Forming single solution specimens by including
parameter sets has been shown as particularly
time consuming. It would be worth to explore GP
implementation to finding the best parameter set
for each basic specimen that is being grades,
which would represent using GP within GP.

Goran Đurić-Developing self-modfying

code model

Journal of Applied Engineering Science 14(2016)2 247

For the sake fulfillment of the above described,
initial research of application of evolution com-
puting, meta-heuristics, artificial neural networks
and above all genetic programming have all
been carried out. The experience drawn from
this paper will be of use in further research on
the subject pertaining to the implementation of
self-modifying software system. In addition to
this, attention is paid to the issue of representing
and installing the knowledge on the domain into
the control application.

REFERENCES

Dewdney A.K.: Recreational Mathematics –
Core Wars (May 1984). http://www.koth.org/.

Nikos Mavragiannopoulos, Nessim Kisserli,
Bart Preneel: A taxonomy of self-modifying
code for obfuscation, Computers & Security
30 (2011)

C. Enrique Ortiz: On Self-Modifying Code and
the Space Shuttle OS http://weblog.cenrique-
ortiz.com/computing/2007/08/18/on-self-mod-
ifying-code-and-the-space-shuttle-os/

Koza john R.: Genetic Programming: On the
Programming of Computers by Means of Natu-
ral Selection. Cambridge, MA: The MIT Press

ISO/IEC 12207, http://www.iso.org/iso/iso_
catalogue/catalogue_tc/catalogue_detail.
htm?csnumber=43447

Sommerville I: Software Engineering, 7-th
Edition. Addison-Wesley, Harlow, England,
2005. http://www.software-engin.com

Booch G., Jacobson I., Rumbaugh J., “UML
User Guide”, Addison-Wesley (1998)

B. Wymann, E. Espié, C. Guionneau, C. Dimi-
trakakis, R. Coulom, A. Sumner. TORCS: The
Open Racing Car Simulator, v1.3.5, 2013

D.Loiacono, J.Togelius, P.L.Lanzi: Car Rac-
ing Competition WCCI2008, Software Man-
ual, Apr.2008

B.Wymann, http://www.berniw.org/tutorials/
robot/

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

E.Onieva, D.A.Pelta, J.Alonso, V.Milanes,
J.Perez: A Modular Parametric Architecture
for the TORCS Racing Engine, 2009 IEEE
Symposium on Computational Intelligence
and Games

Tae Seong Kim, Joong Chae Na, Kyung
Joong Kim: Optimization of an Autonomous
Car Controller using a Self-Adaptive Evolu-
tionary Strategy, International Journal of Ad-
vanced Robotic Systems 2012, Vol.9.73

Yehonatan Shichel, Moshe Sipper:GP-
RARS: evolving controllers for the Robot
Auto Racing Simulator. Mimetic Computing
3(2): 89-99 (2011)

Marc Ebner and Thorsten Tiede: Evolving
Driving Controllers using Genetic Program-
ming. in CIG’09 : Proceedings of the 5th
International Conference on Computational
Intelligence and Games, pages 279-286,
Piscataway, NJ, USA, 2009, IEEE Press

Alexandru Becheru, Catalin Stoean: Opti-
mization of Gear Changing using Simulated
Annealing, Annals of the University of Craio-
va, Vol 39, No 2 (2012)

Extensible Markup Language (XML), https://
www.w3.org/XML/

11)

12)

13)

14)

15)

16)

Paper sent to revision: 13.05.2015.

Paper ready for publication: 30.05.2016.

Goran Đurić-Developing self-modfying

code model

