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The convergence of the Internet of Things (IoT), Artificial Intelligence (AI), and Edge Computing has advanced 
predictive maintenance (PdM). The main two benefits of this integration are to enable real-time monitoring and 
proactive equipment management across industries. This paper presents a comprehensive framework for IoT-driven 
PdM, using AI-powered analytics and Edge Computing to enhance equipment reliability, reduce operational 
downtime, and optimize maintenance costs. Based on a comprehensive study of the previous work, we proposed a 
framework that integrates six key steps to use IoT, AI, and edge computing in preventive maintenance. The steps 
are IoT sensors and devices for data acquisition, Edge and cloud computing for efficient processing, AI-driven 
predictive analytics for fault detection, automated decision-making and alert systems, remote monitoring and 
automated control, and continuous learning for system optimization. The paper discussed the advantages of the 
proposed approach, such as reduced costs, and improved instrument utilization. However, challenges such as 
cybersecurity concerns, integration complexities, and computational resource requirements are also presented. A 
case study involving the implementation of an IoT-based PdM system for water tank trucks in a Civil Defense 
Directorate demonstrates the effectiveness of the proposed framework in real-world applications. Results show that 
real-time data analytics and predictive modeling improve problem detection accuracy, enabling prompt intervention 
and minimizing expensive mechanical breakdowns.  This study proposes a systematic approach to AI-enabled PdM 
adoption, enabling scalable and cost-effective industrial maintenance strategy optimization. 

Keywords: Internet of Thing, predictive maintenance, PdM, machine learning  

HIGHLIGHTS 

− A six-step framework integrating IoT, AI, and Edge Computing is proposed to optimize predictive 
maintenance across industrial sectors. 

− A real-world case study on water tank trucks demonstrates improved fault detection accuracy and reduced 
downtime through AI-powered PdM. 

− The proposed system enables 30–40% cost savings and up to 40% enhancement in asset availability by 
enabling real-time diagnostics and proactive maintenance actions. 

1 Introduction 

The Internet of Things (IoT) transformed industrial operations, particularly in the realm of maintenance practices. The 
traditional reactive and preventive maintenance strategies are associated with unnecessary operating costs and 
unplanned downtime. Predictive maintenance (PdM), on the other hand, applies real-time data capture with advanced 
Artificial Intelligence (AI) and Edge Computing to anticipate possible failures and optimize maintenance schedules 
for asset longevity and operation performance [1,2]. In contrast, condition-based maintenance (CBM) uses real-time 
monitoring of equipment parameters—such as temperature, vibration, and pressure—to detect signs of deterioration 
and schedule interventions only when necessary [3]. While CBM reacts to current equipment states, PdM extends 
this by forecasting future failures using predictive analytics. 
PdM relies on connected IoT sensors built into factory machinery, permitting real-time monitoring of critical 
parameters such as temperature, pressure, vibration, and power usage. Sensor data is processed using machine 
learning (ML) algorithms that detect anomalies and predict component failure before it actually happens. This data-
driven predictive layer is what differentiates PdM from both preventive and condition-based approaches. The 
convergence of IoT and AI towards PdM has been widely accepted worldwide to reduce equipment failure rates by 
up to 50% and maintenance costs by 40% [4-5]. Good-quality data is at the center of the excellence of AI-enabled 
predictive maintenance systems. Redundant sensors of critical parameters to enable cross-validation and fault 
location are employed in most current PdM implementations to prevent the dangers of noisy, missing, or corrupted 
sensor data. Data validation methods such as outlier detection, smoothing filters, and real-time integrity checks are 
employed to identify and correct anomalies prior to feeding data into machine learning algorithms. Edge computing 
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platforms typically conduct early data preprocessing on-site, not only reducing latency but also ensuring that only 
validated data is transmitted for further processing. These processes significantly enhance the robustness and 
reliability of the PdM system, particularly in dynamic industrial environments. 
Recent case studies have demonstrated the actual benefits of PdM over traditional preventive maintenance (PM) 
methods in industrial usage. Cheikh et al. [6], for example, employed Monte Carlo simulations under varying 
maintenance regimes and concluded that PdM reduced downtime and maintenance costs significantly with improved 
overall system reliability versus PM. Specifically, the study highlighted that PdM helped achieve 30–40% reduction 
in unplanned downtime and improved mean time between failures (MTBF) due to the ability to identify faults earlier 
and schedule optimized. Such comparative standards bear witness to the operational value of PdM, particularly in 
cases where equipment availability is mission-critical and reactive maintenance is costly. 
Edge Computing is a crucial element of the PdM model by providing real-time processing at the point of origin, 
reducing latency, and optimizing bandwidth use. In contrast to traditional cloud-based solutions, which demand high 
latency in data transfer, Edge Computing ensures real-time response time and is therefore a favorite in the industry 
among mission-critical industrial applications. Experiments have shown that PdM enabled by Edge-AI significantly 
enhances operational uptime, reduces machine failures, and improves industrial process efficiency [7]. 
Furthermore, the integration of AI into PdM enables more precise failure prediction and flexibility through learning 
mechanisms. Advanced AI models like convolutional neural networks (CNNs) and Long Short-Term Memory (LSTM) 
networks continuously revise their prediction functions against history and real-time data, improving the accuracy of 
fault detection over time [8]. Studies have also shown that Reinforcement Learning (RL) can be used to optimize 
maintenance activity scheduling, dynamically changing maintenance schedules to achieve minimum disruption and 
maximum cost-effectiveness [9]. 
Although it has its advantages, IoT-based PdM is faced with various challenges such as data security problems, 
integration with legacy industrial systems, and the need for high computing capacity. Edge Computing offers a 
solution by processing data locally and minimizing dependency on cloud servers, improving cybersecurity and 
lowering infrastructure expenses [10]. Another critical challenge is the dependability of IoT sensors in hostile industrial 
environments. Sensors may experience calibration drift, physical degradation, or environmental noise over time when 
exposed to extreme temperatures, humidity, vibration, or chemicals. It will result in inaccurate or noisy data and then 
compromise the quality of predictive models and can generate false alarms or undetected failures. To mitigate these 
risks, regular sensor calibration, redundancy in sensor deployment, and the use of signal filtering and self-diagnostic 
algorithms are recommended. Maintenance planning must also account for sensor reliability as a variable, such that 
predictive outputs are cross-checked with physical inspection or secondary data streams where feasible. 
This paper presents an end-to-end IoT-based PdM solution with a focus on AI and Edge Computing integration 
towards optimizing equipment reliability. Based on a review of current state-of-the-art solutions and industry best 
practices, this study aims to provide a systematic methodology for the implementation of AI-based PdM systems 
across industries. Numerous industry reports and case studies indicate that the implementation of PdM can achieve 
a substantial return on investment (ROI) within 12 to 24 months, depending on the complexity and scope of 
implementation. For instance, Tau at al. [11] reported that firms that have implemented PdM programs averaged 
operational cost savings of up to 30%, along with 25–40% enhancement in asset availability by reducing unplanned 
downtime. These economic benefits accrue from enhanced failure prediction, optimization of maintenance 
schedules, and less spare part consumption. Further, the investments in PdM systems are front-loaded, with long-
term benefits like extended equipment life and better safety, making PdM economically attractive to industries that 
have thin operational margins. 
A successful transition from traditional maintenance practices to predictive maintenance requires a systematic 
roadmap that harmonizes technological advancements, upskilling of employees, and phased deployment. 
Companies are advised to start with pilot projects on high-priority equipment using IoT sensors to gain near-term 
return on investment and build internal adoption. Developing data acquisition infrastructure and integrating it with AI 
models for anomaly detection forms the next step, while gradually phasing out reactive and time-based maintenance 
procedures. Moreover, fostering interdepartmental collaboration—especially among IT, operations, and maintenance 
units—is critical for data governance and implementation success. Studies suggest that combining real-time condition 
monitoring with explainable AI not only reduces downtime but also builds confidence among technicians previously 
accustomed to rule-based systems [12-13]. 
The integration of PdM fundamentally changes the role of the maintenance teams, from conventional reactive fix to 
data-based decision-making. The maintenance personnel now must interpret sensor readings, understand machine 
learning predictions, and interact with AI-driven dashboards. To meet this challenge, upgrading accordingly is 
essential. Organizations tend to respond with formal training programs for the operation of IoT devices, data analysis, 
and the basics of AI, internally or through partnership with technical schools. It has been proven that companies 
adopting PdM successfully are more likely to adopt hybrid modes of training—complementing experiential learning 
with online training programs-to bridge the skill gap and leverage workers' trust in new technologies [14]. This shift 
not only boosts efficiency in the workforce but also boosts employee engagement through broadening their 
technological capabilities. 
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2 Materials and methods 

In this section, we present the materials and methods by detailing the proposed framework to use IoT in preventive 
maintenance. The framework outlines each methodological step necessary for integrating IoT, AI, and edge 
computing into predictive maintenance strategies. The integration between the IoT and the use of AI in industrial 
operations has transformed maintenance strategies, making PdM a reality. PdM utilizes IoT sensors, edge 
computing, cloud processing, AI-powered predictive analytics, automated maintenance, and continuous learning to 
establish a self-sustaining system that ensures equipment reliability. Each step in the PdM framework plays a crucial 
role in ensuring a smooth transition from data collection to decision-making and execution. The authors conducted a 
thorough review and analysis of references [15-51] to establish a comprehensive methodology or a general 
framework for integrating IoT into PdM. From this analysis, a structured approach to IoT-based PdM was developed 
and is summarized in the following model. This model consists of six sequential execution steps, as illustrated in Fig. 1. 

 
Fig. 1. Framework for Utilizing IoT in PdM 

2.1 First step.  IoT Devices and sensors for data collecting for PdM 

PdM relies on data collection utilizing sensors to monitor equipment/systems performance. Common in conventional 
maintenance systems, reactive or planned maintenance may lead to unexpected issues, increased operating 
expenses, and unscheduled downtime.  Conversely, IoT-driven PdM allows businesses to constantly gather and 
assess sensor data, hence enabling proactive asset management.  Modern maintenance strategies therefore heavily 
rely on IoT sensors as this shift increases operating efficiency, lowers failures, and optimizes maintenance schedules [15]. 
Data collection powered by IoT begins with the installation of advanced sensors on critical machinery and 
infrastructure.  These sensors detect key factors like temperature, pressure, vibration, humidity, electrical 
consumption, and infrared signals to identify performance variances.  While vibration sensors—for example—are 
extensively used in rotating machinery to identify misalignments or bearing faults, temperature sensors help monitor 
overheating concerns in mechanical and electrical systems. 
Once acquired, sensor data is delivered via wireless communication protocols such Message Queuing Telemetry 
Transport (MQTT), Zigbee, LoRaWAN, and NB-IoT therefore ensuring real-time data delivery to cloud-based or edge-
computing platforms.  Edge computing is very necessary for pre-processing and local level filtering of raw sensor 
data, hence boosting response times and reducing network congestion.  Whereas, cloud computing offers large 
amounts of data storage and advanced AI-based analytics for predictive modelling [16]. These systems recognize 
patterns and abnormalities through digital twin simulations and ML algorithms and hence predict trouble before it 
begins. The technology automatically provides alarms and automates repairs to prevent costly breakdowns whenever 
an impending issue is realized. 

2.1.1 Step’s Benefits 

There are several benefits of IoT sensors incorporated in PdM that help improve asset performance and reliability.  
Some of the key benefits are less downtime and failure avoidance since regular monitoring enables maintenance 
staff to identify issues before they become worse.  Studies have established IoT-based PdM has the potential to 
reduce overall maintenance costs by 40% and reduce equipment failure by 30–50% [17]. 
PdM through IoT improves energy efficiency since real-time monitoring witnesses’ industrial machinery working at 
optimum levels of performance, hence conserving energy wasted unnecessarily. In industrial large-scale 
establishments, where power-guzzling machinery which operates continuously like motors and turbines [18], IoT 
sensors help unveil inefficiencies and maximizing the utilization of power. Moreover, remote monitoring software 
enables businesses to track multiple sites through a single dashboard, thereby reducing the need for regular on-site 
visits and boosting employee productivity. 
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2.1.2 Challenges and Difficulties 

Adoption of IoT-based PdM raises certain problems that must be addressed even with its advantages if efficient 
deployment relies on it.  One of the primary concerns is data overload as industrial IoT (IIoT) devices generate 
massive volumes of real-time data demanding efficient storage, processing, and management.  Strong cloud 
infrastructure and big data analytics are required if we are to deal with the data effectively [19]. 
IoT sensors and connected devices exposed to ransomware attacks, data breaches, and hacking makes 
cybersecurity issues very crucial as well. PdM is powered by sensitive equipment data, so secure communication 
protocols and blockchain-based authentication need to be used in order not to allow unauthorized access.  Moreover, 
connectivity issues at remote industrial sites might impact real-time data transmission, thereby impacting PdM 
activities maybe delays. Finally, small and medium businesses (SMEs) which are searching for PdM platforms [15] 
observe their funding being impeded by the initial costs of rolling out IoT sensors and AI analytics platforms. 

2.1.3 Examples of This Step's Implementation 

Several industries have successfully implemented IoT-based PdM to enhance operational productivity and reduce 
equipment failure. In the manufacturing sector, companies such as Siemens and General Electric (GE) employ 
vibration sensors and temperature sensors to monitor production line equipment with the objective of identifying 
mechanical faults at early stages. Research conducted by Candón Fernández et al. [20] has reported that IoT-based 
PdM in manufacturing has raised production uptime by over 20%. 
In the motor vehicle sector, fleet operators have used predictive telemetry systems to monitor vehicle performance 
and manage maintenance schedules. Lysenko and Лисенко [21] put across that IoT-enabled fleet monitoring 
solutions have lowered vehicle downtimes by 35% and reduced maintenance costs. Likewise, in smart cities, IoT 
sensors have been embedded into bridges, water pipes, and power grids to avoid structural collapse and maximize 
urban infrastructure maintenance [22]. In healthcare, AIoT (AI + IoT) is being used to monitor and maintain vital 
medical equipment, such as MRI scanners and ventilators. Real-time IoT monitoring hospitals have experienced 
improved equipment lifespan and patient care efficiency [23]. 

2.1.4 Step2. Data Acquisition & Processing (Edge & Cloud Computing) in PdM 

Currently, modern-day organizations greatly depend on PdM, which allows them to forecast the equipment failure 
before it occurs, thereby reducing costs of maintenance and downtime.  The practice greatly depends on edge and 
cloud computing technologies and data acquisition and processing.  Edge computing allows near-sourcing 
processing of real-time data, hence reducing latency and allowing instant decision-making. Cloud computing allows 
companies to efficiently analyze large volumes of data using scalability and enhanced predictive analysis.  Merging 
two technologies allows companies to advance their PdM models, thereby providing smooth data flow from IoT 
sensors to actionable insights [24]. 
From data acquisition from sensors to real-time analysis and cloud-based ML models, PdM encompasses various 
phases in data collection and processing. First gathering real-time data on critical parameters like temperature, 
vibration, pressure, and power consumption, IoT sensors deployed in industrial equipment then consolidate Edge 
computing devices first level of processing continuously feed data from such sensors. 
Edge computing plays a very important role when it comes to filtering and processing data at the point of origin.  Edge 
devices instead of pushing large amounts of raw data to the cloud, they monitor sensor data in real-time and 
recognize early indications of equipment malfunction.  In the event of a potential weakness, immediate alerts may be 
sent to maintenance personnel so they can take action before disasters occur. This reduces decision-making latency 
that burdens network bandwidth [25]. 
Sophisticated cloud-based AI-powered analytics allow companies to compare real-time data and historical trends 
simultaneously for better failure prediction. Information then forwarded to cloud computing architectures, which hold 
and manage through ML, is stored and held when it needs a more intense examination. Large industrial use heavily 
relies on cloud computing because data from vast locations can be classified and viewed at the same time. 

2.1.5 Step’s Benefits 

Inserting edge and cloud computing in PdM has a variety of advantages that boost industrial efficiency and reliability. 
The primary gain is the ability to identify anomalies in real-time. Edge computing is useful in helping firms detect 
machine malfunctions in a timely way and consequently avert catastrophic machine failure. It is mostly important in 
high-risk sectors such as manufacturing, health care, and transportation because a fault in detecting could cause 
financial loss and risk [26]. 
The two other significant advantages are cost-saving and bandwidth utilization efficiency. Edge computing conserves 
cloud storage and processing costs over sending enormous data to cloud servers because it allows only important 
and pertinent data to be sent. This is quite helpful in far-flung industrial locations where the network bandwidth might 
be constrained. Moreover, the scalability and flexibility of cloud computing enable businesses to manage many 
industrial plants from a centralised platform, thereby offering perfect data access and analysis [27]. Edge devices 
also promote cybersecurity and data privacy.  Sensitive data is processed locally at the edge and is not sent out to 
third-party cloud servers, thereby reducing the cyber threat.  Nonetheless, when cloud computing is applied for 
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deterrence of unauthorized access and leakage of data, strong encryption techniques and AI-based security 
capabilities are just inevitable 

2.1.6 Challenges and Difficulties 

Although edge and cloud computing have numerous benefits in PdM, their integration is not without issues. One such 
significant issue is the significant initial investment in the usage of IoT sensors, edge devices, and cloud analytics 
tools. SMEs would risk having a hard time transitioning over from traditional schedules in maintenance on the basis 
of financial restrictions. 
One of the greatest issues would be problems with information protection. Cloud infrastructure could enable 
ransomware threats, data breaches, and attacks to gain access within them. PdM involves the sharing of proprietary 
industrial information, and companies would need to have high-grade protection features such as end-to-end 
encryption and blockchain-driven validation in order to safeguard their resources [28]. 
Another issue is the connectivity and network constraint. While PdM relies on a consistent stream of information, in 
remote factory conditions, network disconnections would compromise real-time monitoring. While there is research 
on how to leverage private business networks and 5G networks as a solution, having a consistent connection remains 
challenging, especially in locations with inferior infrastructure [25]. 
The complexity in integrating the information is ultimately a major hurdle. Those factory floors with aging infrastructure 
and diverse ecosystems are not capable of integrating edge computing, cloud infrastructure, and analytics based on 
AI in a seamless PdM solution. They are required to provision employees with standardized information formats, train 
them, and harness API-driven solutions [24] in a bid to obtain seamless communication among multiple maintenance 
systems 
2.1.7 Examples of This Step's Implementation 

Most industries have leveraged edge and cloud computing in an effective manner to drive PdM. Firms like Siemens 
and General Electric (GE) have integrated edge-based AI analytics into production. By doing this, they have reduced 
equipment failures by 25% and improved operational uptime [24]. With real-time processing of edge sensor data, 
these companies have optimized machine performance and minimized unplanned downtime. 
PdM is applied in autonomous vehicle and fleet technology in the automotive sector. Edge computing and AI 
algorithms are used to monitor vehicle performance and battery health, enabling remote diagnostics and predictive 
fault detection. PdM in vehicle fleets has seemingly increased vehicle lifespan and decreased maintenance costs by 
thirty percent. 
PdM based on edge and cloud computing in the healthcare field has brought corresponding innovations in medical 
device reliability. Hospitals utilizing AI-driven PdM have observed a 40% increase in system availability, ensuring that 
critical medical equipment such as MRI scanners and ventilators remain operational at all times [28]. 

2.2 Step 3. AI & Predictive Analytics in PdM: Anomaly Detection & ML Models 

AI-driven predictive analytics revolutionize maintenance by enabling real-time monitoring, anomaly detection, and 
failure prediction, reducing unexpected breakdowns and costs. But proactive, Condition-Based Maintenance (CBM) 
made possible by AI alters the approach, therefore improving asset reliability and operating efficiency.  Large dataset 
analysis, anomaly detecting, and pre-start failure prediction all rely heavily on ML models; therefore, ensuring best 
equipment performance and reducing downtime [24]. 
Data collection and preprocessing begin with IoT sensors placed on industrial equipment monitoring temperature, 
vibration, pressure, and electrical signals.   Data quality and efficiency are improved by edge computing cleaning 
sensor data to eliminate duplicates and extraneous data [29]. 
Anomalies are detected using AI.   Random Forest, SVM, and ANNs are supervised learning models that detect 
whether equipment is working well or failing early. Without labeled failure data, K-Means clustering and Autoencoders 
find operational deviations. Advanced methods include LSTM networks and Deep Learning models like CNNs 
analyze time-series sensor data to discover minute irregularities that may indicate problems. 
Following anomalies is when predictive analytics and failure forecasts take front stage. AI systems employ historical 
and real-time sensor data to estimate the remaining useful life (RUL) of machine components. Predictive algorithms 
like Recurrent Neural Networks (RNNs) and Gradient Boosting Machines (GBMs) help maintenance teams to plan 
repairs ahead rather than waiting for a breakdown by means of exact estimates on when a component is likely to fail [30]. 
Finally, AI-driven maintenance optimization and decision-making ensure that discovered anomalies sendoff real-time 
alerts and automated repair orders. Digital twin technology—which creates virtual representations of physical assets-
helps to maximize maintenance procedures and hence lower unnecessary intervention by replicating real-world 
performance and failure scenarios [31]. AI models also continuously learn and improve by methods of reinforcement 
learning (RL), wherein maintenance strategies are dynamically adjusted based on fresh data inputs [32]. 
AI based PdM introduces far greater computation than traditional CBM methods. While CBM relies on threshold-
tracking monitoring and rule-based reasoning, PdM incorporates continuous data ingestion from high-frequency IoT 
sensors and then performs complex processing with machine learning (ML) or deep learning models. These include 
real-time anomaly detection, model retraining and training, and multivariate trend analysis-all of which involve high 

http://www.engineeringscience.rs/


Journal of Applied Engineering Science 

Vol. 23, No. 3, 2025 
www.engineeringscience.rs 

 

 
publishing 

 Mohammad M. Hamasha et al. - A comprehensive 
framework for IoT-driven predictive maintenance: 
Leveraging AI and edge computing for enhanced 
equipment reliability 

 

476 

memory, computation, and most likely GPU acceleration. Deep neural networks like LSTM and CNN architectures 
for time-series forecasting, for instance, are computationally heavy and most likely require edge-cloud hybrid 
deployment to satisfy the constraints of latency and bandwidth. But this enhanced demand is counterbalanced by 
the higher accuracy and earlier detection of failure that PdM can provide, and that results in fewer false alarms and 
more optimally scheduled maintenance. 

2.2.1 Step’s Benefits  

PdM provides several advantages with AI-powered analytics. Some of the main benefits include reduced downtime 
and increased reliability of assets. Detection of abnormalities at an early stage enables AI-powered maintenance 
processes enhance equipment life and minimize unplanned downtime by as much as 50%. 
Even more value comes from lower maintenance expenses. Conventional maintenance routines tend to involve 
unnecessary servicing, thereby wasting resources. Predictive analytics using AI streamlines maintenance schedules, 
thereby eliminating unnecessary interventions and achieving up to 40% savings on operational expenses. Moreover, 
AI models provide real-time fault detection and reaction, thus assuring that any problems are corrected before they 
become significant breakdowns and so improving the general system dependability and safety. 
 Across industry, energy, transportation, and healthcare, PdM motivated by AI is also flexible and scalable. AI models 
can process enormous amounts of sensor data from many industrial sites, therefore offering centralized monitoring 
and prediction insights for several operating scenarios [33]. 

2.2.2 Challenges and Difficulties 

Use of AI-based PdM has challenges even though it has advantages. One of the significant challenges is high data 
dependency and model complexity.  AI models' accurate predictions rely on vast, quality data.  Industries without 
historical failure data, however, might not be able to create efficient AI models [30]. 
Cyber threats and data privacy are yet another intimidating factor. PdM AI-based systems rely on cloud computing, 
hence are susceptible to cyber-attacks like data breaches, sensor spoofing, and unauthorized access.  Industries 
must utilize strong encryption, threat detection based on AI, and blockchain-based security solutions to protect 
confidential maintenance data. 
Moreover, particularly for small and medium-sized businesses (SMEs), high computational capacity and 
infrastructure costs pose financial challenges. PdM with AI relies on strong computer resources, cloud infrastructure, 
and AI-specialized expertise [32] and is costly to deploy and maintain. 
Most companies hold back on using AI-powered maintenance solutions due to the "black-box" nature of deep learning 
models, where the decision-making processes are not easily accessible.  The resolution of this challenge entails 
integrating explainable AI (XAI) methods, which provide insight into how AI models predict outcomes [33]. 
2.2.3 Examples of This Step's Implementation 

AI-driven industrial PdM has been employed by companies like Siemens and GE to keep equipment in plants in 
operation, hence reducing failures by thirty% while increasing the efficiency of operations [34]. Through the detection 
of defects in renewable energy plants and power grids by helping the energy sector, anomaly detection using AI has 
provided more efficient energy distribution and reduction of costly outages [30]. Particularly in the case of hospital 
equipment monitoring, AI-driven PdM has also benefited the healthcare industry. AI-driven PdM for MRI machines, 
ventilators, and infusion pumps has helped minimize equipment downtime thus ensuring uninterrupted healthcare 
provision and patient safety [32]. ML-based anomaly detection of engine aircraft has minimized flight failures and 
optimized flight maintenance schedules, thus improving passenger safety and operational reliability [31]. 

2.3 Step 4. Decision Making & Alerts in PdM: Fault Detection and Maintenance Planning 

PdM has evolved as a transformational tool for raising asset dependability and reducing downtime by using real-time 
monitoring, predictive analytics, and automated decision-making systems.  This approach depends much on alert 
generation and decision-making as they ensure early problem discovery, proactive maintenance scheduling, and 
maximum asset performance.  Among traditional maintenance methods, reactive and preventive maintenance might 
lead to unexpected failures or unnecessary repairs.  AI-powered PdM instead integrates ML models, IoT sensor data, 
and advanced analytics to provide real-time fault identification and intelligent maintenance planning, therefore 
guaranteeing both operational efficiency and cost savings. 
Using decision-making and alert systems in PdM follows a systematic approach comprising real-time data collection, 
anomaly detection, automated alerts, and optimum maintenance schedule. 
First in this approach is real-time data collection and defect spotting.  Industrial IoT sensors constantly monitor critical 
equipment variables like temperature, vibration, pressure, and electrical current.  Processing these data pieces are 
AI-based anomaly detection models-which uncover early symptoms of failure by comparing real-time sensor readings 
against prior operational data.  Detecting deviations that lead to probable flaws largely rely on ML techniques such 
random forests, deep learning networks, and support vector machines (SVMs) Sui et al. [32]. 
The device instantly generates an alert informing maintenance staff about a found anomaly.  The degree of the 
discovered flaw defines the priority of these alerts, thereby ensuring that non-critical issues are scheduled for regular 
maintenance while serious failures are handled immediately.  Usually sent via email alerts, smartphone dashboards, 
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SMS, or direct connection with industrial control systems, notifications allow maintenance workers [35] to respond 
quickly. 
Once alerts are raised, PdM scheduling and decision-making take center stage.  AI models allow businesses to 
strategically develop interventions by calculating the remaining useful life (RUL) of machine components.  By use of 
operational logs, maintenance histories, and failure trends, decision support systems (DSS) identify the most 
reasonably priced maintenance schedule.  This ensures that important maintenance tasks are finished before 
equipment issues start, therefore avoiding needless service [34]. 
At finally, lifetime learning and adaptive optimization ensure that PdM systems improve with time.  AI models increase 
their fault detection accuracy and maintenance planning recommendations by continuously reviewing new sensor 
data.  Real-time operational data allows reinforcement learning techniques to dynamically alter their decision-making 
strategies [36]. PdM systems may therefore be used. 

2.3.1 Step’s Benefits  

For many different industries, PdM provides several significant benefits thanks to its mix of real-time alert systems 
and AI-powered decision-making. Two most major advantages are early fault identification and fewer downtime.  PdM 
is shown to cut unplanned downtime by up to 50%, therefore ensuring that equipment remains operational and 
productive.  By seeing and resolving problems before they become major failures, businesses may save valuable 
production time and costly repairs [37]. 
Two other major benefits are still reduced costs and better maintenance scheduling.  Conventional methods of 
maintenance either over-maintain equipment (source of superfluous costs) or under-maintain it (cause of unexpected 
failures).  AI-driven PdM reduces these inefficiencies and resulting in up to 35% savings in maintenance expenditures 
while extending asset lifespan by guaranteeing that maintenance activities are conducted only when needed [38]. 
Moreover, real-time alerts, AI-powered decision-making tools, and avoidance of hazardous equipment failures 
enhance worker safety.  In industries such nuclear power, chemical processing, and aviation in avoiding catastrophic 
failures and maintaining regulatory compliance, AI-driven PdM is very vital [39]. Furthermore, very scalable is PdM 
driven by AI, which fits numerous industries like manufacturing, healthcare, energy, and transportation.  AI tools let 
firms centrally monitor and manage PdM plans by analyzing massive amounts of sensor data from many industrial 
sites [40]. 

2.3.2 Challenges and Difficulties 

Although warning systems and AI-driven decision-making offer numerous advantages, certain problems that need to 
be addressed if they are to be most effective. 
One of the hardest challenges are false positives and alert fatigue.  Should a PdM system generate too many alarms-
including false alarms-maintenance workers may get overwhelmed and ignore or dismiss significant signals.  
Constant training and fine-tuning are necessary for AI models to help to lower this issue so that alarms only go off 
for real-time failures or high-risk anomalies [41]. 
Another great challenge is cybersecurity connected to cloud-based PdM systems. Dependant on AI analytics 
managed on cloud systems, PdM is vulnerable to cyberattacks, data breaches, and illicit manipulation. To address 
these problems industries, have to implement robust cybersecurity systems like end-to--end encryption, blockchain-
based authentication, and intrusion detection systems [42]. 
Combining AI-driven PdM with conventional industrial equipment presents even another challenge.  Many businesses 
still run older equipment without IoT capabilities, which makes real-time data monitoring and automated warning 
usage difficult. Solutions include IoT-enabled industrial innovations, edge computing, and sensor retrofitting [43] will 
help to define smooth PdM integration. 
Moreover, difficult are high computer requirements and infrastructure expenses, particularly for SMEs (small and 
medium-sized companies).  Smaller businesses might find it financially onerous to have high processing capabilities 
and cloud infrastructure required by AI-based PdM solutions. By means of hybrid edge-cloud computing systems, 
data processing may be efficiently distributed and operational costs [44] saved. 

2.3.3 Examples of This Step's Implementation 

Some firms have efficiently used AI-powered decision-making and alert systems to boost PdM performance. 
AI-driven PdM in manufacturing by companies like Siemens and General Electric (GE) helps to continually monitor 
production equipment in real time, therefore reducing downtime by thirty%. AI-powered DSS optimize machine 
performance, hence ensuring continuous production [34]. PdM has raised the reliability of sectorally used medical 
imaging equipment, ventilators, and infusion pumps.  Hospitals have seen a 40% drop in medical equipment failures 
by means of PdM grounded on AI, therefore ensuring continuous healthcare services and patient safety [45]. AI-
powered PdM for smart grid systems has improved sectoral energy distribution reliability, hence reducing outages 
and energy losses.  Predictive warnings enable energy companies to design proactive infrastructure maintenance, 
hence ensuring ongoing supply of power [43]. AI-driven PdM in airplanes has reduced engine failures, therefore 
enabling airlines to optimise their maintenance schedules and increase passenger safety [36]. 
Step 5. Automated Maintenance & Control: Remote Monitoring and Repairs in PdM 
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Automated maintenance and control systems are changing industrial management of equipment maintenance, issue 
identification, and repairs.  Remote monitoring technologies, IoT sensors, and AI allow industries to now 
autonomously diagnose and manage operations free from human participation.  Included in PdM systems, automated 
control systems provide self-healing characteristics, problem detection, and real-time monitoring.  These advances 
enhance resource consumption, reduce downtime, increase general equipment efficiency [46] and reduced 
downtime. Automated maintenance and control systems combining real-time monitoring, remote diagnostics, and AI-
driven decision-making help to provide PdM and automatic fixes. 
Starting the process with remote monitoring, IoT sensors and edge computing devices continually collect real-time 
data from industrial machines, HVAC systems, energy grids, or transportation networks.  These sensors provide the 
data needed for cloud-based analytics systems tracking critical running parameters like temperature, vibration, 
pressure, and energy consumption.  After that, AI based anomaly detection technologies search this data for early 
warning signs of probable failures. 
Oncean anomaly is discovered, automated maintenance systems run relying on predefined protocols.  A minor flaw 
might cause the system to remotely adjust settings, recalibrate parameters, or initiate free from human intervention 
self-repair mechanisms.  Automated work orders generated for more severe issues guide maintenance personnel or 
trigger robotic repair systems.  In critical environments like smart grids or water treatment plants, remote monitoring 
and control systems may isolate problematic components, reroute power, or switch on backup systems to prevent 
widespread failures [47]. Programmable Logic Controllers (PLCs) and Supervisor Control and Data Acquisition 
(SCADA) operate completely automated PdM often in concert with AI-driven predictive analytics.  By allowing remote 
personnel to monitor, diagnose, and even repair assets from centralized control centers, these technologies help to 
reduce the need for on-site inspections and human interventions. 

2.3.4 Step’s Benefits  

Many diverse industries benefit much from the use of automated maintenance and control systems in PdM. Two 
primary advantages are better efficiency and fewer downtime. By adopting real-time remote monitoring and 
automated maintenance, industries may find problems before they start, therefore reducing unexpected equipment 
downtime by 40–50%. This is very useful in key sectors such manufacturing, transportation, and energy production 
where equipment failures may cause major disruptions. 
Another great benefit comes from savings in maintenance activities. Conventional approaches of maintenance 
demand scheduled repairs, frequent inspections, and reactive repairs resulting in excessive labor costs.  Automated 
maintenance systems assist to reduce maintenance-related expenditures by 30–40% by means of optimal repair 
schedules and resource allocation [48]. 
A major benefit is also improved risk and safety control.  Structural defects, pressure leaks, or overheating-among 
other real-time hazards-allow automated control systems to quickly respond to halt safety incidents.  In areas such 
aviation, chemical processing, and healthcare, where maintenance failures might have catastrophic consequences, 
this is especially crucial [32]. 
Remote monitoring and automatic maintenance also enable companies to remain flexible and expandable.  Large-
scale industrial operations including smart cities, automated industries, and utility networks gain from centralized 
maintenance management-where AI-driven systems coordinate maintenance tasks across many sites, so reducing 
the demand for on-site personnel-where centralized maintenance management benefits. 

2.3.5 Challenges and Difficulties 

Adoption of automated maintenance and control systems in PdM presents several challenges that companies have 
to handle even with their advantages. 
One of the main challenges is high first investment costs. Robotic maintenance systems, IoT sensors, and AI-
powered monitoring platforms all need a large financial outlay for adoption. Long-term cost savings are rather 
significant even if small and medium-sized firms (SMEs) may find it difficult to justify the first expenditures of 
automation [49]. 
Still another major difficulty are cybersecurity concerns and data privacy considerations. Dependent largely on cloud-
based data processing and remote connectivity, automated maintenance systems are prone to cyberattacks, hacking 
attempts, and data breaches. Cybersecurity technologies include end-to--end encryption, blockchain-based 
authentication, and AI-driven threat detection [32] help to defend industrial assets from cyberattacks. 
Moreover, making adoption of automated maintenance systems difficult are issues of technical complexity and 
integration. Many industries still rely on legacy equipment without IoT connectivity; hence it is challenging to mix 
modern automation technologies with more old equipment.  Under research are concepts such edge computing, 
sensor retrofitting, and hybrid AI-cloud integration to address this disparity. 
Another challenge comes from too depending too much on automation and probable system failures.  While 
automation drastically lowers human participation, AI-driven systems face the risk of misreading anomalies or 
ignoring appropriate maintenance activities. Industries must set additional control systems, human monitoring 
systems, and fail-safe mechanisms to ensure consistent operations and therefore lower this risk [50]. 
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2.3.6 Examples of This Step's Implementation 

Some industries have employed remote monitoring and automated maintenance very well to enhance PdM 
strategies. 
AI-powered robotic maintenance systems have been used in the industrial sector by companies such Siemens and 
General Electric (GE), therefore reducing plant downtime by thirty%. By means of real-time IoT monitoring and 
autonomous maintenance, these solutions provide continuous production with little human intervention. 
In smart energy grids, AI-based automated control systems monitor power transmission networks and electrical 
substations, spotting flaws and automatically rerouting electricity to stop outages. PdM methods have reduced 
maintenance costs and improved grid reliability by 25% in renewable energy plants [47]. 
Moreover, embraced by the medical industry is automated maintenance for technical tools. MRI scanners, ventilators, 
infusion pumps, and remote diagnostics controlled by AI have grown more dependable by means of self-repair 
technologies, therefore ensuring that hospitals experience 40% fewer equipment failures [50]. 
AI-powered remote monitoring in the transportation sector is used by autonomous railway and aviation maintenance 
systems to examine tracks, diagnose aircraft engine problems, and automate repairs, thereby reducing downtime 
and enhancing passenger safety [49]. 

2.4 Step 6. Continuous Learning & Optimization in PdM: Model Refinement and Security Updates 

PdM drives modern industrial processes today as it enables businesses to spot equipment failures before they start.  
Conversely, static predictive models are less effective at spotting new types of mistakes and changing with the times 
to fit operational environments.  Here is where constant education and optimization have application. Using adaptive 
ML models, real-time feedback loops, and regular security updates, PdM systems may improve cybersecurity, 
predict, and boost accuracy.  Maintaining effective and in line with evolving industry needs depends on constant 
updating and improving predictive models [26]. Maintenance plans remain such this way. 
Always learning and optimizing in PdM 
Constant learning in PdM comprises of security enhancements to prevent cyberattacks, real-time feedback 
integration, and little model improvement. 
Beginning with dynamic model training and ongoing data collection, the IoT sensors capture real-time data on 
equipment health including temperature, pressure, vibration, and energy use among other factors.  AI driven PdM 
systems look at this data and find early failure tendencies.  But when new patterns emerge, existing models must be 
changed using fresh training data. Conventional batch learning models often find it difficult to match this demand, 
hence online learning systems-which continuously improve predictions as new data floods in—must be adopted [51]. 
Reinforcement learning (RL), which helps PdM models adjust their decision-making depending on real-time 
performance feedback, is another key technique in continuous learning. Evaluating cost, risk, and operational 
constraints, RL-based systems dynamically optimize maintenance schedules so that repairs are performed at the 
most effective time [52]. 
Natural basis for PdM optimization is security updates. Dependent more and more on cloud computing, IoT networks, 
and AI-driven analytics, PdM systems are susceptible to hacks, sensor spoofing, and data breaches. Companies 
utilize automated security patches, blockchain authentication, and anomaly-based intrusion detection [51] to guard 
maintenance data and prevent unauthorized modifications. 

2.4.1 Step’s Benefits 

For many different industries, using security updates and continuous learning in PdM has great advantages. 
Among the key benefits are less false alarms and improved prediction accuracy.  Constant improvement of ML 
models allows PdM systems to adapt new failure patterns, hence lowering the risk of false positives—unneeded 
maintenance-and false negatives-missed failures. From this, more consistent failure projections and better 
maintenance decisions ensue [27]. 
Two other significant advantages are still cost management and effective maintenance scheduling.  Driven by AI, 
PdM regularly alters its maintenance plans based on real-time operational data, therefore ensuring only necessary 
repairs.  By up to 40% this reduces needless downtime and maintenance expenses [52]. 
Still another great benefit is enhanced data integrity and cybersecurity. Regular security updates protect PdM 
systems against cyberattacks, fraud data injections, and unauthorized access.  Blockchain security, end-to--end 
encryption, and AI-powered intrusion detection will enable industries to ensure that PdM data remains accurate and 
secure [51]. 
Furthermore, continuous schooling enhances scalability and adaptability, which makes PdM useful in manufacturing, 
energy, healthcare, and aerospace among other areas.  Adaptive models may provide dependability even in dynamic 
industrial environments by self-optimizing based on real-time operational conditions [53]. 
Longer equipment lifespan and efficiency are ultimately quite beneficial.  Constant enhancement of PdM systems 
helps to lower unnecessary asset wear and tear, thus extending their running lifespan.  Research using continuously 
updated PdM systems demonstrate asset lifespan rises between 20 and 30%. 
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2.4.2 Challenges and Difficulties 

Although security improvements in PdM and ongoing education offer numerous advantages, their implementation 
causes significant challenges. 
Two main challenges are significant computer costs and infrastructure requirements. Components of ongoing 
education include frequent model retraining, cloud computing, and real-time data analysis-all of which need for high-
performance computer resources.  Small and medium-sized companies (SMEs) may find implementing adaptive AI-
driven PdM systems difficult with relation to early expenditures [26]. 
Data quality and sensor drift are yet another challenge.  While AI models rely on consistent, high-quality sensor data, 
calibration drift, ambient noise, and sensor degradation may distort readings and provide false maintenance 
predictions.  If industries want to address this issue, they must invest in sensor diagnostics, recalibration techniques, 
and redundancy systems [51]. 
Cybersecurity is still a big problem even if PdM systems are becoming connected with IoT networks and cloud 
systems. By altering sensor data, targeting adversarial attacks on AI models may assist to generate false 
maintenance alerts. Reducing these risks demands for using anomaly detection algorithms, blockchain-based 
authentication, and safe AI training [52]. 
Interpretability of AI models adds even another challenge.  Many PdM systems-especially those developed on deep 
learning and neural networks-function as black-box systems, which makes it challenging for maintenance teams to 
know how predictions are generated. Using explainable AI (XAI) techniques will improve openness and aid to 
establish trust in PdM decisions [52]. 

2.4.3 Examples of This Step's Implementation 

Many businesses have cleverly implemented continuous learning and optimization into their PdM strategies. 
PdM systems based on reinforcement learning in manufacturing are used by companies like Siemens and Bosch to 
dynamically modify maintenance plans depending on evolving operational conditions.  These AI-driven technologies 
have reduced machine failures by thirty percent; they have also increased industrial production [27]. 
Continuous learning AI models have been used by hospitals to monitor MRI scanner, ventilator, and robotic surgical 
equipment performance.  By producing a 35% drop in medical device failures, these adaptive PdM systems have 
guaranteed continuous patient care and guaranteed that equipment breakdowns are projected [53]. 
AI driven constant optimization has benefited the energy sector. This has bearing on maintaining the smart grid.  By 
means of self-learning fault detection systems, dynamic modifications in maintenance schedules for renewable 
energy installations and power substations serve to reduce outages and increase grid efficiency [52]. 
Constantly updating relying on real-time aircraft performance data in aerospace and aviation, AI-driven PdM models 
enable airlines to optimize engine maintenance and decrease in-flight breakdowns [51]. 

3 Results and discussion 

In this section, the results and discussion are provided through an in-depth case study. The case study demonstrates 
the application of the proposed framework and discusses the outcomes, practical implications, and observed benefits 
in a real-world setting. The case study implementation relied on a layered architecture combining IoT sensors, Edge 
AI modules, and a cloud-based analytics dashboard to support real-time monitoring and predictive alerts. The PdM 
program described in the case study is designed to enhance the reliability and operational efficiency of water tank 
trucks belonging to Jordan's Civil Defense Directorate. The fleet, responsible for emergency response operations 
such as firefighting and disaster relief, has to be available for operation at all times to enable quick deployment. Any 
unexpected breakdown of these vehicles can have a major impact on emergency response times. To mitigate this 
risk, the study integrated a IoT-driven PdM system that monitors critical vehicle parts in real time to facilitate early 
fault detection and timely maintenance interventions. 
The heart of this system is the On-Board Diagnostics II (OBD II) reader, which has been integrated right into the cars. 
The system collects real-time data from an array of sensors installed around the truck, including those monitoring the 
gear transmission system, condition of the clutch, and efficiency of diesel injection. The information is transferred via 
Wi-Fi to the Microsoft Azure cloud platform to enable constant, secure, and remote access to maintenance staff. As 
indicated in Figure 2, this cloud-based system provides seamless data flow from the vehicle's onboard computer to 
the maintenance center for comparison with normal operating parameters. 
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Fig. 2. The Architecture of the system 

One of the advantages of this system is its real-time anomaly detection and alert system. The moment a fault is 
sensed—be it faulty engagement of gears, excessive clutch wear, or anomalous fuel injection pressure—the driver 
and maintenance are alerted at once by SMS to the driver and email to maintenance. Such speedy alerting implies 
that immediate remedial action is feasible before more damage is caused and potential for complete mechanical 
breakdown. The system incorporates ML algorithms in it that search through old and new data regularly and predict 
impending failures most likely to occur beforehand. 
The model focuses on three critical components of the car: 

1. Gear Transmission System: Identifies misuse of gears, which results in excessive wear and eventual 
mechanical breakdown. 

2. Clutch Wear Monitoring: Tracks usage of clutch plates and generates warnings when they should be 
replaced. 

3. Diesel Injection System: Monitors pressure fluctuations to identify fuel pump or injector issues before they 
affect performance. 

One of the most important findings in the case study was the impact of improper gear selection on vehicle wear and 
breakdowns. As Figure 3 displays, the evidence revealed that 36% of move-off occurrences occurred in higher gears 
(gear 5 or 6), leading to over-stress in the transmission system. This chronic error resulted in early gear failure, which 
went unnoticed until total breakdown had occurred. Application of the OBD II-based monitoring system allowed early 
detection of the problem, thereby enabling maintenance crews to notify drivers and prevent similar failures in the 
future. 
The data collected from the sensors was processed using a cloud-based analytics platform, which utilized time-series 
analysis and threshold-based alert mechanisms to detect anomalies. In the instance of clutch wear, data analysis 
showed progressive clutch plate wear to be a major cause of vehicle downtime. Figure 4 indicates the way that wear 
on the clutch increases with age, and how the absolute travel distance of the clutch plate increases from 24mm to 
50mm as it ages. When the distance approaches 60mm, an automatic warning is initiated so that the driver can 
schedule for maintenance before the clutch becomes non-operational. This preventive approach increases the 
lifespan of the clutch system by many folds, keeping downtime to a bare minimum. 
In addition, the system provides a report of diesel injection performance, a criterion influencing the efficiency of 
vehicles. According to Figure 5, the model regularly monitors fuel injection pressure to ensure optimum combustion 
conditions. A reduction of diesel pressure indicates that there can be an issue with the fuel pump, filter, or injectors, 
and if this situation is not cured, engine performance may be depreciated. By detecting and repairing such issues in 
advance, the system avoids fuel wastage and reduces long-term maintenance. 

 
Fig. 3. The percentage of moving – off in the truck gear 
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Fig. 4. The absolute travel and the wear in clutch system 

 
Fig. 5. Different pressures in the vehicle's diesel system 

The following discussion provides a step-by-step analysis of how the introduced framework was applied in the case 
study. 

3.1 Step 1. 

The first step of the framework is the acquisition of data through IoT sensors, which continuously monitor vehicle 
health parameters in real-time. The case study depicts the effectiveness of the step by mounting an OBD II reader 
on the vehicle, whereby permanent recording of critical operational data is facilitated. The system specifically 
monitors gear usage, clutch wear, and diesel injection performance, which are primary determinants of the reliability 
of water tank trucks. 
One of the significant issues found during the data collection process was driver error in gear shifting, where truck 
drivers tended to initiate moving the vehicle in higher gears (5 and 6) instead of the optimal lower gears. As seen in 
Figure 3, 36% of the move-off incidents were recorded in gear 5 or 6, placing unnecessary stress on the vehicle's 
transmission system, accelerating wear, and making failure more likely. Without real-time monitoring, this fault went 
undetected to the maintenance department until a complete breakdown. The capability of driver error detection and 
measurement by IoT-based monitoring underlines the need for real-time data capture for PdM. 

3.2 Step 2. 

Once data is collected, the storage, processing, and transmission of the data is the second necessity. In the case 
study, the OBD II reader wirelessly transmits real-time data to the Microsoft Azure cloud platform, which is indexed 
and scanned for anomalies. The cloud technology enables immediate access to the vehicle diagnostics for 
maintenance professionals to actively monitor the health of fleets. 
The importance of data processing is demonstrated in the study of the clutch system. Data collected from different 
vehicles showed a correlation between driving patterns and clutch wear, where improper gear shifting caused the 
clutch to deteriorate earlier. This information was essential in predicting clutch failure and issuing early warnings to 
drivers and maintenance staff. The system further improved the response times, such as in the case study, where 
clutch wear was foreseen in advance and thus prevented costly mechanical damage. Such foresight was not only 
crucial in determining the reliability of vehicles but also applied to optimize the maintenance schedule by reducing 
unnecessary downtime. 

3.3 Step 3.  

Step three of the methodology involves applying predictive analytics and ML to detect anomalies and forecast 
failures. To implement the solution, we used condition-monitoring sensors connected via a wireless network to an 
IoT platform, enabling real-time data acquisition and fault prediction. The case study applied historical data and real-
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time data to pick up on wear patterns in the clutch system. As shown in Figure 4, the absolute travel of the clutch 
plate increases as a function of time as the system wears from the initial value of 24 mm to 50 mm and beyond. 
When this value reaches 60 mm, the system automatically sends an SMS alert to the driver and an email alert to the 
maintenance team. This predictive aspect is such that clutch replacement is scheduled before failure and 
consequently prevents operational downtime. 
Additionally, ML algorithms were applied to study how driving behaviors impact component wear. Data-driven 
analysis in Table 1 revealed that gears were shifted in high gear excessively to get the vehicle in motion, leading to 
excessive wear in transmission and clutch components. By these abusive driving behaviors being detected, drivers 
were warned and informed to modify their behavior, and considerable lowering of component wear and maintenance 
costs was realized. 

Table 1. The wear of moving – off in each gear 

GEARBOX Number of Moving-off Manoeuvers  Moving-off Wear (KWs) Shifting Wear (kWs) 
Grear R  2775 10704451 427028 
Grear 1, 2 969 4009480 45402 
Grear 3, 4 3351 41658441 5382209 
Grear 5, 6 2177 35415069 22839182 
Grear 7, 8 368 9724307 29096354 
Grear 9, 10 39 47035 41824704 
Grear 11, 12 8 0 5492807 
Grear 13, 14 8 25581 40857555 
Grear 15, 16 1 0 18158718 
Grear RM 0 0 0 
Grear DM 0 0 0 

3.4 Step 4. 

The fourth step of the model is to generate alerts and notify maintenance decisions by means of real-time diagnostics. 
The case study demonstrates this with an automated alert system that notifies drivers and maintenance personnel 
when critical levels are reached. 
For instance, in the diesel injection system, fuel pressure deviations were being monitored and analyzed in real-time. 
As depicted in Figure 5, the system constantly tracks injection pressure levels and identifies unusual fluctuations, 
which could indicate issues with the fuel pump, filter, or injectors. In any moment when pressure falls below an optimal 
level, an immediate alert is triggered, allowing for swift intervention. This procedure ensures that issues are 
addressed before the engine fails, thereby improving overall car efficiency and fuel mileage. 

3.5 Step 5.  

Step five is maintenance response automation, which allows vehicles to self-diagnose and schedule servicing 
according to predictive data. The case study illustrates this with great effect through clutch wear monitoring. The 
system is continuously measuring clutch plate thickness and, as soon as it detects excessive wear, auto-schedules 
maintenance. This prevents unexpected vehicle downtime and has repair work done at optimum intervals rather than 
sticking to rigid maintenance schedules. 
Further, OBD II reader real-time diagnosis enabled maintenance groups to recognize the trend of gear abuse on 
various trucks and develop fleetwide driver training programs. This proactive intervention strategy not only extended 
vehicle component life, but also contained overall maintenance costs and production downtime. 

3.6 Step 6.  

The final step in the framework ensures that PdM system gets better continuously with adaptive analytics and ML. 
The case study indicates how previous breakdowns were used to enhance predictive models so that the system 
could detect gearbox issues 55,000 km in advance as opposed to before. 
One of the most notable improvements attained was the reduction of gearbox failure from occurring at 65,000 km to 
being detected at 10,000 km. This was made possible through the ability of the system to learn from experiences, 
detect patterns in driver behavior, and provide real-time feedback to correct faulty habits. Besides, the notifications 
and warnings became more focused as the system refined its models of failure prediction so that it only provided the 
most critical alerts. This reduced alert fatigue and allowed maintenance crews to focus on priority interventions. 
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4 Conclusions 

Using IoT, AI, and Edge Computing in PdM allows real-time monitoring, precise failure prediction, and fast decision-
making, revolutionizing industrial maintenance. The research offered a framework that incorporates IoT data 
collecting, Edge and cloud computing for fast processing, AI-based predictive analytics, automated maintenance 
control, and continuous learning for system improvement. These solutions may decrease equipment downtime, 
optimize maintenance schedules, cut operating costs, and improve asset dependability and performance.   
Jordan's Civil Defense Directorate's IoT-based PdM case study proved its efficacy.  Real-time monitoring of critical 
vehicle components and AI-driven predictive analytics increased fleet availability, defect identification, and 
intervention. It was shown that PdM decreases unexpected failures, increases asset lifetime, and improves 
operational efficiency. In spite of its benefits, cybersecurity threats, hefty initial investment, and legacy system 
integration complexity prevent widespread use. These difficulties necessitate secure communication protocols, cost-
effective IoT solutions, and smooth interoperability between industrial infrastructures and PdM technologies.  This 
research offers a scalable and cost-effective strategy for using AI-driven PdM to optimize maintenance operations.  
The incorporation of sophisticated AI models like reinforcement learning and digital twin simulations could improve 
predicted accuracy and adaptive maintenance tactics in future research.  Industry may move toward smarter, self-
sustaining maintenance ecosystems that enhance productivity and asset usage by enhancing PdM frameworks. 
The specific scientific contribution of this study lies in demonstrating the practical integration of IoT-enabled predictive 
maintenance within civil defense fleet operations, highlighting measurable improvements in operational efficiency 
and reliability. By employing real-time monitoring and data analytics, this work advances the application of predictive 
maintenance in critical service sectors and provides a replicable model for similar fleet-based systems. 
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