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Ensuring product quality in the automotive industry becomes a technical strategic challenge in the era of digital and 
networked supply chains. Traditional final inspection methods, often reactive, are not sufficient to attempt the rigorous 
expectations of IATF 16949. The case of covers seating industry must be at the forefront of industrial excellence. 
Evoking comfort, functionality, and aesthetics for customer, taking into account that the cutting area in such industry 
is the focal point to loop considered as internal supplier in the covers supply chain, cutting output is the input for all 
assembly lines, which means that an uncontrolled quality KPI will disturb the manufacturing process. A hybrid AI –
based predictive quality control modeling in cutting process is used combines expert-based validation through the 
Fuzzy Delphi Method to define the factors affecting the quality of cut products. The integration of data driven 
prediction (AI and IoT) represented in a linear-regression-based supervised learning model trained and learned with 
a simulated dataset from real production conditions according to literature review and experts feedback to detect and 
prevent failures in the early stage of production. The analysis shows the three variates (cutting speed, cutting 
temperature, vibration intensity) predefined from the literature review were validated as input data. The results 
indicate a high predictive quality accuracy since the coefficient of determination R2 =0.87 and the model statistically 
very significant ANOVA results. Concluding that the vibration factor have the most significant impact on quality cutting 
defect. This hybrid AI-based predictive approach provides an improvement lever of the smart automotive 
manufacturing chains supporting data driven decisions under the IATF 16949. 

Keywords: automotive industry, IATF 16949, smart supply chain, supervised learning -linear regression, predictive 
quality 

HIGHLIGHTS 

− A hybrid AI-based predictive model integrates Fuzzy Delphi and data-driven learning to assess cutting
quality.

− Three key process factors — cutting speed, temperature, and vibration—were validated as significant quality
drivers.

− The model achieved high predictive accuracy with R² = 0.87 and statistically significant ANOVA results.
− Vibration intensity identified as the most influential factor affecting cutting defects in automotive seat cover

production.

1 Introduction 

Recently, the digitalization of the industrial supply chain has evolved to be a pillar in present production systems. 
Especially the car industry, characterized by an exacting precision, stringent quality criteria and complex supplier 
networks, is in the front- grade of this change [1; 2]. The growing trend toward flexibility, traceability, and efficiency 
in production has clearly driven the rise of intelligent technology including AI and IoT [3; 4]. Real-time tracking, data-
driven decision-making and adaptive control are realized using these technologies [5]. In the automotive, which is 
regulated by tight IATF 16949 requirements [6], requires a systematic quality guarantee that goes beyond traditional 
testing [7; 8]. The digital revolution in the automotive supply chain, has founded a new era of intelligent quality 
management, where connected systems and machine learning algorithms can improve efficiency, reliability and 
predictivity throughout the production lifecycle. 
Nonetheless, despite these advancements in technology, many industries still using a reactive quality control system, 
which is confined to end-of-line inspection and detect after production [9]. This reactionary approach results in high 
nonconformance costs, process inefficiencies and late corrective action. With increased competitiveness and higher 
customer expectations, it is increasingly recognized that traditional quality assurance (QA) strategies reliant on post 
manufacturing inspection are not adequate to guarantee performance, traceability, and satisfaction of the customer 
[10; 11]. 
This has caused the industry to move towards a predictive and proactive quality paradigm [12]. This new view makes 
use of real time data acquisition and AI based analytics for predicting a potential defect, adjusting process parameters 
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in “real time” and feedback control to continuously improve the production performance [13; 14]. Artificial intelligence 
has taken a leap forward in recent years and has become a key area of focus and a strategic lever for quality control 
in industrial systems, since the architecture of these systems focuses primarily on fault prediction and automated 
detection of non-conformities, based on real data for a practical decision-making loop [15]. Recently, three typologies 
of approaches that stand out in the literature review for quality control as detailed in table 1: 

Table 1. AI typologyies and their role in industrial quality control 

AI 
Typology Purpose and definition Industrial application 

example 
Main 

Benefits 

Computer 
Vision 

Computer Vision is an AI approach used to detect visual 
defects such as scratches, foreign bodies on the material, 
deformations, color defects usig image acquisition and 
processing techniques [16]. This system lead to a reduction 
in human dependency by relieving production/inspection 
operators while remaining vigilant in terms of product 
conformity. 

1/Surface inspection in 
the paint shop – BMW 
[17] 
 
2/Visual inspection on 
the assembly line - BMW 
iFACTORY: AIQX in 
assembly (plugs, plates) 
[18]. 

1/Detection 
of 40-50 μm 

defects; 
zero 

defects. 
 

2/Reduced 
assembly 

errors. 

Machine 
Learning 

Machine learning is a data-driven modelling approach used 
in particular to collect data from industrial sensors with the 
aim of predicting the probability of an event occurring. We 
use random forests or support vector system (SVMs) as 
examples of this type of system. This technology is proactive 
rather than reactive model for implementing predictive action 
plans. [19] 

Audio signal detection - 
BMW Dingolfing: 
Acoustic inspection at 
the end of the line [18]. 

Reliable 
acoustic 
quality 
control. 

Deep 
Learning 

Deep learning is a strategy use convolutional neural 
networks (CNN) capable of learning complex nonlinear 
patterns. This methodology of approach recommended in 
complex cases, for non-accessible faults, which are not 
directly visible [20]. 

In-line tomography of 
electric motors – BMW 
[21]. 

Automatic 
internal fault 

detection 

Accordingly, predictive quality models-based process control is a natural and necessary transition towards the vision 
of zero-defect production and sustainable competitive levels. The process quality is modeled using a mathematical 
or algorithmic representation, incorporating factors influencing quality as a result, expressed through the number of 
defects, rework and scrap, while taking into account the impact of production parameters. Well-defined and effective 
integration of these models into supply chains makes them more intelligent, with a strategic vision. The new approach 
towards intelligent supply chains is designed to analyze data collected in real time on production lines, and the 
combination of AI-IoT will be an industrial breakthrough [22]. On the other hand, when reviewing from one article to 
another, it became clear that there is fewer researches; that integrates this concept for alignment and compliance 
with the required standards and the logic of IATF 16949.  
Although Manufacturing 4.0 is already well underway, quality management systems are among the last to get 
automated, and they remain one of the least predictive aspects of industrial operations. The majority of industries 
continue to rely on manual or semi-automated inspection, such techniques are reactive by nature and do not stop 
there until defects have been created. This reaction is resulting in delays, inefficient use of resources and high non-
conformance costs, especially in a high accuracy industry such as automotive manufacturing. 
Despite of the IATF 16949 being a strong reference process control and continuous improvement framework, it does 
not direct into how digital and intelligent technologies should be employed to reach predictive quality assurance. In 
this context, the main motivations of this work are: 

− Change being like reactive inspection-based QA systems into predictive (data driven) decision-making 
systems that can identify quality deviation before it happens. 

− Incorporating AI and IoT innovations into a connected, IATF 16949-based quality model to improve visibility, 
assurance and performance. 

− Construct and verify a predication model, as a case of real usages cutting automotive seat covers to 
determine which parameters of process effect defects occurrence. 

− Prove how AI-based predictive can contribute to zero-defect manufacturing, and to process improvement in 
the automotive industry. 

In view of these challenges as well as the gaps identified, this study seeks to make a contribution towards an 
intelligent IATF 16949-compliant supply chain model, taking the case of an automotive accessory production line for 
car covers [23] in the cutting process. Developing an intelligent supply chain model that benefits from literature review, 
the knowledge of experts integrating Fuzzy Delphi approach [24] to choose the variates affecting number of defects 
in cutting area. In addition, the use of AI-based predictive quality control in order to achieve the reduction of time and 
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waste inspection, increase customers’ satisfaction and has full compliance with IATF 16949. The model combines 
simulation data and linear regression analysis in the identification of key process variables affecting defect generation 
[25]. Through detecting reasons of non-conformity and predicting, the introduced methodology exhibits how AI 
supervised learning can convert traditional quality management from reactive into a predictive, proactive, self-
optimizing one. In such a way, the study aims to serve theoretical development as well as practical needs for 
application of a framework that can be customized and used on the shop floor in industry practice. 
In the end, this research illustrates how the combination of Fuzzy Delphi method, AI, IoT and IATF 16949 principles 
can change the future landscape of automotive quality management. 

2 Materials and methods 

As the automotive industry continues to grow, it faces increasing challenges and has become more demanding in 
terms of compliance with ISO 9001 and IATF 16949 standards [26]. Therefore, in a tough competitive industrial 
context, the primary measure of the performance for intelligent supply chains is the quality indicator [27], while in this 
notorious digital transformation, the integration of artificial intelligence (AI) and internet of things (IoT), also advanced 
mathematical models make it possible to anticipate defects and reinforce quality control. This article proposes a 
predictive simulation model integrating AI-based and IoT to improve the detection of non-conformities in a high-
performance supply chain. 

2.1 Description of the industrial process studied 

The process targeted in our article, is the cutting process; an essential phase in the design and accessory automotive 
industry; more specifically, the industry of automotive seat covers. In order to have a clear vision of such industry 
process, the figure 2 illustrates the overall process flow of automotive cover manufacturing, from raw material 
reception to final delivery. The process begins with the reception of incoming materials, followed by unloading and 
initial storage under controlled conditions to ensure material traceability and compliance with quality standards. 
Subsequently, material flows are managed and directed toward cutting operations. For the cutting phase, as a crucial 
sub-operation in the manufacture of the cover product, the materials are cut in the form of raw material rolls on 
specific automated machines (CNC) [28]. Then comes the inspection phase of the cut pieces, checking the 
dimensional accuracy of the piece, the irregularity of the cut, the conformity of the internal shapes in the cut piece...etc 
[16]. The precision of the cut depends on the parameters and conditions of the CNC machine, which has a direct 
impact on the final quality of the cover. The validated cut components are transferred to the cover assembly lines, 
where individual elements are assembled before proceeding to final cover assembly. At this stage, an additional 
quality control and packaging process is performed to ensure conformity with dimensional, aesthetic, and functional 
requirements. Finally, the finished covers are managed through pool stock logistics, enabling optimized inventory 
control and synchronized deliveries to downstream assembly plants. This structured process flow supports early 
defect detection and provides a suitable framework for implementing predictive quality control under IATF 16949 
requirements. The global covers manufacturing process is presented in figure 2 [29]. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Process functional decomposition of a cover 
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Fig. 2. Covers manufacturing process [29] 

2.2 Intelligent production environment simulation: Fuzzy Delphi Method choosing studied parameters 

In the absence of real data from an industrial environment, a simulated dataset created to represent an intelligent 
production line, equipped with IoT sensors. These sensors enable continuous measurement of critical variables that 
can influence product quality the target variable is the number of defects detected on the cut parts inspected at the 
end of the line. 
The three variables selected as critical factors according to the literature review are: 

− Cutting speed (in m×min-1): direct impact on cutting accuracy. 
− Machine temperature (in °C): affects material dilatation and precision. 
− Vibration level (in mm×s-1): cause of major defects in cutting. 

These parameters are well known in the literature, and for a good basis for study, we will use the Fuzzy Delphi 
approach, a decision-making method for validating or confirming selected parameters. This is the role of the classic 
Delphi method, coupled with fuzzy logic to eliminate the subjectivity of judgment and human uncertainty from the 
Delphi approach. 
This method begins with the selection of parameters as already mentioned and reviewed in the literature in the fields 
of cutting, the textile and clothing industry, CNC machine operation, and its role. Next, a Likert scale questionnaire 
will be given to a sample of 10 experts who will be selected using Delphi methods. A minimum of 10 experts with at 
least 5 years of expertise and a higher academic level will be required as criteria for selecting the panel of experts, 
which will then allow us to collect the experts' judgments in a more objective and qualitative manner. We will transform 
the qualitative judgments into quantitative data using the fuzzy Likert scale as shown in the table 2 below [30], by 
assigning a fuzzy value in the form of a triangular fuzzy number (TFN) (l, m, u) for each modality [31; 32]. The TFN 
is presented in figure 3, this set range from 0 to 1, where:  

- l: least value, the minimum assessment value 
- m: most probable value 
- u: upper (greatest) value, the maximum assessment value 

 
 

Fig. 3. Triangular fuzzy number 
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Table 2. Seven points of fuzzy scale 

The following step after collecting expert opinions is to aggregate fuzzy opinions known as the Fuzzy Geometric 
Mean Value by applying the following formula, where n is the number of experts and i the factor studied: 

Ᾰ𝑗𝑗 = 1
𝑛𝑛
∑ 𝐿𝐿𝑖𝑖 , 1

𝑛𝑛
∑𝑚𝑚𝑖𝑖 , 1

𝑛𝑛
∑ 𝑢𝑢𝑖𝑖                                                                                                   (1) 

Continuing our approach with the defuzzification step, we convert fuzzy values into precise numbers known as crisp 
value 𝐶𝐶𝑗𝑗 , which are the overall fuzzy scores for each factor, which can be expressed through: 

          𝐶𝐶𝑗𝑗 = 𝑙𝑙+𝑚𝑚+𝑢𝑢
3

                                                                                                            (2) 

As a final step, the acceptance threshold for the parameter to be retained must be greater than or equal to the 
threshold value of 0.5 named cutoff value α; otherwise, it is eliminated, this cutoff threshold value is commonly used 
in Fuzzy Delphi studies to ensure consensus and relevance among experts [33].  

− If 𝐶𝐶𝑗𝑗 ≥ 0.5, the factor is accepted.  
− If 𝐶𝐶𝑗𝑗 < 0.5, the factor is rejected. 

2.3 Model framework 

The model used in this study is a multiple linear regression [34] as a method for supervised learning, qualified as a 
transparent and interpretable predictive model, which will models the relationship between process variables (input) 
and the number of defects (output). 
The model is expressed as follows: 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =  𝛽𝛽0 + 𝛽𝛽1 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝛽𝛽2 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝛽𝛽3 ∗ 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 + 𝜀𝜀                    (3) 

Where:  
− β0: constant (interception) 
− β1, β2, β3: coefficients of variables, representing their impact on defects 
− ϵ: epsilon is the error term. 

For the data simulation part that comes just after the validation of parameters and model definition, real production 
conditions were used to create a database of 50 observations. Each valid parameter is associated with a well-defined 
range based on industry standards, literature review, and feedback from the panel of pre-selected experts, as well 
as adding the accordance to intelligence expertise from machine operators; we arrived also at the realistic coefficients 
for each parameter. 
To enhance realism, we add a random noise to our model to obtain output data on the number of defects. This noise 
will represent sensor inaccuracies, micro-variations in machines, and environmental disturbances. 
In brief, the developed approach combines expert-based validation and data-driven prediction to set up a hybrid AI-
based predictive quality control model. Deep learning methods can be highly accurate but require large datasets and 
computing power; our approach is simpler and interpretable, suitable for smaller datasets. Taking into account the 
limitations in data availability represent one of the most significant challenges identified throughout this study. 
The FDM was employed as the first phase for determination and validation of critical process parameters influencing 
the cutting quality. A panel of experts assessed the relevance and importance of each factor. Using linguistic scales 
converted in to fuzzy number values. After several consensus and defuzzifications, three key factors were 
determined: cutting speed, cutting temperature and vibration intensity. In the second stage, a linear-regression-based 
supervised learning model is trained with the validated preference set obtained at first stage as input feature vector 
for the quality indicators (number of defects) and predicted output values. Quality outcomes are predicted using 
machine-learning model learned on simulated data, ensuring that this model is interpreted and meets the 
requirements of IATF 16949 in an industrial world that relies on AI-based solutions.  

Qualitative terms Acronym Crisp Scale Fuzzy Values 

Very weakly important VWI 1 (0.0,0.0,0.1) 

Weakly important WI 2 (0.0,0.1,0.3) 

Low important LI 3 (0.1,0.3,0.5) 

Moderately important MI 4 (0.3,0.5,0.7) 

High important HI 5 (0.5,0.7,0.9) 

Very high important VHI 6 (0.7,0.9,1.0) 

Extremely important EI 7 (0.9,1.0,1.0) 
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The architecture of our system is based on the concept of intelligence, with the aim of creating an intelligent supply 
chain through anticipation and early detection. Figure 4 below presents the model architecture. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Architecture model 

3 Results and discussion 

3.1 Modeling and simulation results 

3.1.1 Building the production line simulation model: Fuzzy Delphi Method to choose factors 

In this section, we focused on a production line in the cutting area for the manufacture of car seat covers. To carry 
out this study and achieve our objective, we first need to validate the study parameters that affect the quality of the 
cut product. To do this, we will use the fuzzy Delphi method. Applying the FDM method, we selected 10 experts to 
evaluate the predefined factors: speed, temperature, and vibration, in a literature-based approach. The table 3 below 
details our panel of selected experts, the expert panel was selected based on different criteria, including professional 
position, years of experience in the automotive industry more than 4 years, direct involvement in cutting or quality 
control processes, and familiarity with IATF 16949 requirements. 

Table 3.  Expert list for decision 

Expert Position Area of expertise 
Industry 

Experience 
(years) 

Selection criteria 

Expert 1 Plant Operations 
manager 

production 
operations, process 
coordination 

18 
Extensive experience in plant-level operations 
and decision-making related to cutting and 
assembly processes 

Expert 2 Quality 
coordinator 

Quality systems, IATF 
16949 compliance 6 Direct responsibility for quality monitoring, 

audits, and non-conformity management 

Expert 3 Process 
engineer 

Cutting process 
engineering and 
optimization 

9 Hands-on experience in defining cutting 
parameters and improving process stability 

Expert 4 
Quality 
Manufacturing 
engineer 

Manufacturing quality 
engineering 6 Involvement in defect analysis, root cause 

analysis, and continuous improvement 

Expert 5 Customer 
contact engineer 

Customer 
requirements and 
quality feedback 

7 Interface between customer expectations and 
internal quality performance 

Expert 6 Production 
manager 

Production planning 
and execution 10 Operational expertise in managing production 

flow and defect prevention 

Expert 7 Plant Quality 
manager 

Plant-level quality 
strategy 12 Oversight of quality performance and 

implementation of IATF 16949 standards 

Expert 8 Supply chain 
manager 

Logistics and material 
flow management 8 Expertise in material traceability, supplier 

coordination, and inventory control 

Expert 9 Technical 
manager 

Technical systems 
and industrial 
equipment 

10 
Experience in machinery performance, 
maintenance coordination, and technical 
problem-solving 
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Expert Position Area of expertise 
Industry 

Experience 
(years) 

Selection criteria 

Expert 
10 

Supplier quality 
assurance 
engineer 

Supplier quality 
management 5 Expertise in supplier audits, incoming material 

quality, and defect prevention at source 

Subsequently, a Likert scale questionnaire is assigned to each expert for a qualitative assessment of each parameter. 
After collecting the responses from our collaborators in this study, the Fuzzy scale table is used to convert the data 
and produce quantitative values in the form of triangular numbers. Table 4 below summarizes the qualitative results 
of the experts' assessments, and Table 5 shows the conversion into fuzzy values. 

Table 4. The expert’s qualitative assessment 

 

Table 5. Defuzzification results 

After completing the defuzzification process, we will now proceed to calculate the parameters associated with the 
analysis: the fuzzy geometric mean value (FGMV) and the fuzzy score as a crisp value (C). Table 6 below shows the 
results of the fuzzy Delphi analysis. According to the results obtained in this table, all defuzzification values for the 
analyzed factor exceed the cutoff value α, which means that the fuzzy score (C) >= 0.5. These results prove that all 
measured elements are accepted. As such, industry experts confirm our preselected parameters. 

Table 6. Fuzzy Delphi analysis result 

By validating the input parameters that affect the quality of the cut product, which visualized in terms of the number 
of defects detected in the final inspection of each production line in the cutting area, we can define the value ranges 
for each parameter at this stage, with the help of industry experts familiar with the cutting process. Using interviews, 
which provided us with plausible ranges, as well as relevant basic tools such as CNC machine manuals [35] and 
studies on CNC cutting, textiles, and clothing  those focusing on the production of automotive seat covers [16]. Table 
7 below summarizes the realistic ranges identified for the remainder of our study on the cutting process. 
 
 

Factor Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 

Cutting Speed EI EI HI EI VHI 

Temperature HI MI VHI VHI EI 

Vibration VHI EI MI HI HI 

Factor Expert 6 Expert 7 Expert 8 Expert 9 Expert 10 

Cutting Speed HI VHI MI HI HI 

Temperature VHI HI HI HI MI 

Vibration VHI VHI VHI EI HI 

Factor Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 

Cutting speed (0.9,1.0,1.0) (0.9,1.0,1.0) (0.5,0.7,0.9) (0.9,1.0,1.0) (0.7,0.9,1.0) 

Temperature (0.5,0.7,0.9) (0.3,0.5,0.7) (0.7,0.9,1.0) (0.7,0.9,1.0) (0.9,1.0,1.0) 

Vibration (0.7,0.9,1.0) (0.9,1.0,1.0) (0.3,0.5,0.7) (0.5,0.7,0.9) (0.5,0.7,0.9) 

Factor Expert 6 Expert 7 Expert 8 Expert 9 Expert 10 

Cutting speed (0.5,0.7,0.9) (0.7,0.9,1.0) (0.3,0.5,0.7) (0.5,0.7,0.9) (0.5,0.7,0.9) 

Temperature (0.7,0.9,1.0) (0.5,0.7,0.9) (0.5,0.7,0.9) (0.5,0.7,0.9) (0.3,0.5,0.7) 

Vibration (0.7,0.9,1.0) (0.7,0.9,1.0) (0.7,0.9,1.0) (0.9,1.0,1.0) (0.5,0.7,0.9) 

Factor FGMV Fuzzy Score (C) Threshold cutoff value Expert Agreement 

Cutting speed  0.64, 0.81, 0.93 0.793 0.5 Accept 

Temperature 0.56, 0.75, 0.9 0.737 0.5 Accept 

Vibration 0.64, 0.82, 0.94 0.8 0.5 Accept O N
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Table 7.  Plausible ranges of variables in the cutting process 

Variable Type Realistic range Unit Justification 

Cutting speed Input 45 – 55 m×min-1 In line with industrial CNC machines for automotive fabrics [36] 
and experts 

Temperature Input 65 – 75 °C Based on experts, engine temperature and CNC cutting 
machines [37] 

Vibration Input 1.5 – 2.5 mm×s-1 According to experts. 

3.1.2 Identification of expected relationships between inputs and outputs 

In this case, we consider that the defects are linearly dependent. The regression model is expressed as follows: 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =  𝛽𝛽0 + 𝛽𝛽1 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝛽𝛽2 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝛽𝛽3 ∗ 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 + 𝜀𝜀                    (4) 

Where:  
− β0: constant (interception) 
− β1, β2, β3: coefficients of variables, representing their impact on defects 
− ϵ: is the error term.  

Based on the literature and industrial feedback from our panel of experts and according to intelligence expertise from 
machine operators, we arrived at the realistic coefficients as detailed in Table 8. In order to make the simulated 
dataset more realistic and representative of an industrial environment, a random noise component added to the 
generated data. This noise simulates the natural variability observed in real production systems, which can arise from 
sensor imprecision, material heterogeneity, or environmental fluctuations. The amplitude of this noise was set to 
±0.5, corresponding approximately to 5% of the total range of the target variable (number of defects). This level of 
variability is consistent with industrial processes that are relatively stable but still subject to small random 
disturbances.  

Table 8.  Regression model coefficient 

Coefficient Value Description 

β0 5 Basic defects, even if everything is optimal 

β1 0.1 Low-speed influence 

β2 0.3 Moderate temperature influence 

ϵ ±0.5 Noise, random value to simulate industrial variability 

     As a result, the equation (5) is a linear formula used to represent the relationship between sensors and defects: 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =  5 + 0.1 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 0.3 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 1.5 ∗ 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 + 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (5) 

The brief is to determine the number of defects occurring well in advance of the end-of-cutting phase, using the three 
sensors selected for data collection: cutting speed (in m×min-1), machine temperature (in °C) and cutting vibration 
(in mm×s-1). 
A data simulation is realistically generated as a set of 50 observations, since real data are not available, under the 
assumption that temperature and vibration are two criteria influencing the number of defects. Whereas to be more 
realistic, it is necessary to add noise as demonstrated in our article in the previous section, a feature encountered in 
the industrial world at the time of production. So as to model these relationships, we have opted for multiple linear 
regression modelling following equation (5). 
The table 9 below is a sample of 10 observations shows the simulation generated to train the model, the whole 50 
observations detailed in Appendix. The simulation developed from plausible ranges of variables in the cutting process 
and the linear formula predefined. As output the number of defects and the influencing characteristics: temperature, 
speed and vibration taking into account the noise in the calculation on the formula.  

Table 9. Simulated dataset - 10 observations 

Observation Speed (m×min-1) Temperature (°C) Vibration (mm×s-1) Defects 

1 51 70 1,6 33,49 

2 48 68 1,87 32,91 

3 52 71 2,17 34,64 

4 49 69 2,17 33,49 
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Observation Speed (m×min-1) Temperature (°C) Vibration (mm×s-1) Defects 

5 51 71 2,09 34,57 

6 54 69 1,77 33,87 

7 47 69 2,06 33,69 

8 51 71 1,88 34,56 

9 52 72 2,47 35,26 

   10 49 69 2,35 33,87 

After generating the above dataset, the relationship between defects and sensors is then automatically learned by a 
linear regression model as a supervised learning, which finds the most relevant coefficients from the data. After 
training, the model delivers the following results detailed in the table 10. 
The regression results show a very good predictive accuracy, since the coefficient of determination R2 =0.87.  The 
impact of each variable as shown differs from one variable to another; the variable that comes first in terms of 
influence on the number of defects, with a coefficient of 1.50, is vibration, followed by temperature, with a coefficient 
of 0.31. While the results show, that speed has a weaker impact on the number of defects increase (0.095). Which 
means an increase in the vibration that exhibits the highest regression coefficient parameter; leads to higher defect 
probability. Moreover, Regarding the analysis of variance ANOVA F=109.21 very high value demonstrates and 
confirms that the predictive model is excellent, and the p-value is well below the threshold of 0.05 with a value of 
6.162*10-21, validating that the model is statistically very significant. Automatically we reject the null hypothesis, 
although the variables in our study (speed, temperature, vibration) have a significant explanatory relationship on the 
number of defects. From these results, the initial intuition that the vibration variable plays a critical and crucial role in 
cutting quality as the primary contributor to defect occurrence is confirmed. 

Table 10. Regression statistics report 

Regression statistics 

Coefficient of multiple determination 0,93642455 

Coefficient of determination R2 0,87689093 

Coefficient of determination R2 0,86886208 

Standard error 0,29808179 

Observations 50 

Variance Analysis ANOVA 

  Degree of 
freedom 

Sum of 
squares Average square F Critical value 

of  F 

Regression 3 29,1128193 9,70427309 109,21747 6,16E-21 

Residuals 46 4,08722672 0,08885275  
 

Total 49 33,200046     

  Coefficients Standard 
error Statistics t Probability 

Lower limit 
for 

confidence 
level = 95% 

Upper limit 
for 

confidence 
level = 95% 

Constant 4,59633248 2,09904211 2,18972858 0,03365345 0,37117986 8,8214851 

Cutting Speed 0,09561634 0,0162588 5,88089616 4,37E-07 0,06288906 0,12834362 

Temperature 0,30979236 0,03074701 10,075529 3,20E-13 0,24790185 0,37168288 

 Vibration 1,50393887 0,16643361 9,03626908 9,22E-12 1,16892539 1,83895235 O N
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Fig. 5. Residual graph 

Figure 5 showing the distribution of residuals versus predicted values, illustrating the fit of the regression model. 
Which means that the predicted defect rates closely match the observed values, with residuals ranging mostly 
between -0.5 and +0.5. This indicates a stable and unbiased model performance. No significant trend detected in the 
residual distribution, confirming the adequacy of the regression model for predictive quality estimation. These results 
show that the integration of the AI system, even in a simulated context, makes it possible to be proactive in predicting 
defects before production, and to move on to the final visual inspection stage. This system can be defined as a 
strategic industrial lever for quality improvement, meeting IATF 16949 standards. 

3.1.3 Integrated AI-Based architecture for predictive monitoring and decision making in cutting operation  

The proposed architecture aims to predict the quality deviations occurring during the automated cutting process of 
automotive fabrics and synthetic materials. As illustrated in Figure 6, the system architecture is composed of four 
main layers: data acquisition, preprocessing, prediction, and decision support. 
In the data acquisition layer, IoT-based sensors mounted on the automated cutting station continuously measure 
process parameters such as cutting speed, tool vibration, and cutting temperature. These parameters are known to 
have a direct influence on the cut quality and material integrity. Since real industrial data were confidential and 
partially unavailable, a synthetic dataset was simulated to replicate realistic production variability. A Gaussian noise 
of ±0.5 was added to each variable to represent natural measurement uncertainty and equipment fluctuations. 
The preprocessing layer performs normalization and outlier filtering to ensure model stability. Data are synchronized 
and converted into time-series form, allowing statistical correlation between parameters and cut quality indicators. 
In the prediction layer, a multiple linear regression model was trained using regression analysis tool to estimate the 
Quality KPI (number of defects) as a function of vibration amplitude, cutting speed, and temperature. The regression 
analysis yielded a determination coefficient R2=0.87, showing a strong predictive relationship. The ANOVA test 
confirmed the statistical significance of the model with p<0.001.Finally, the decision and feedback layer compares 
predicted and actual defect rates. When a deviation beyond the tolerance threshold is detected, the system can 
recommend real-time adjustments such as reducing cutting speed, adjusting tool temperature, or triggering blade 
maintenance, taking into account that vibration parameter is the primary contributor of defects occurrence in cutting 
area. This predictive control approach supports IATF 16949 requirements by enabling proactive quality management 
and minimizing scrap in the automotive supply chain. 

Fig. 6. AI-Based predictive model architecture for the automated cutting process in automotive manufacturing 

For the integration of AI in the decision aid, we have built two simulation scenarios as detailed in table 11:  

Table 11. Simulation Scenarios 

Scenario A: without AI/IoT combination Scenario B : with AI/IoT combination 

Production operates in the traditional 
way, where quality defects are only 
visualized after final inspection of the cut 
product, no real-time processing of 
sensor data. 

The predictive model receives sensor data for each cycle and anticipates 
the number of expected faults. This information is used to trigger 
preventive actions, to go beyond the corrective mode and optimize 
operation; if the threshold is exceeded, actions can be triggered (slow 
down the line, check the machine, etc.). 

3.2 Discussion 

Following the development of Hybrid AI-based predictive quality model, the results show promising value in migrating 
conventional quality management behavior from automotive supply chains towards intelligent systems. The results 
suggest that the combination of linear regression as a supervised machine learning method in our case study   and 
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IoT-based data acquisition can lead to an enhanced understanding of how the process variables are related to defect 
creation. More notably, validation of the factors affecting product quality and conformity using Fuzzy Delphi Method 
demonstrates that data-driven analytics is capable to anticipate imperfections before they happen.  
A sensitivity analysis was conducted to evaluate the relative influence of key cutting parameters, namely temperature, 
vibration, and cutting speed, on product quality. The analysis is based on the magnitude and sign of the regression 
coefficients obtained from the predictive model. The results indicate that vibration is the most influential parameter 
affecting defect occurrence. Small variations in vibration levels lead to significant changes in the predicted defect 
probability, which can be explained by its direct relationship with tool wear, machine instability, and surface 
irregularities during cutting operations. Temperature parameter shows a moderate influence on quality performance. 
Elevated temperatures tend to accelerate material deformation and tool degradation, indirectly increasing defect 
rates, although its impact remains less pronounced than that of vibration, cutting speed exhibits the lowest sensitivity 
among the analyzed parameters. While extreme speed values may affect surface quality and dimensional accuracy, 
its influence within the operational range considered in this study is comparatively limited. 
These findings highlight the importance of prioritizing vibration monitoring and control in predictive quality strategies. 
From an industrial perspective, this allows maintenance and process optimization efforts to focus on the most critical 
parameter, thereby improving efficiency and compliance with IATF 16949 requirements. 
Therefore, this result demonstrates the advantage of predictive quality control in accordance with the one of a risk-
based thinking and continuous improvement philosophy as defined by IATF 16949. Unlike traditional inspection 
systems which only identify issues after products are made, predictive-based as opposed to the traditional static and 
reactive control, it enables the real-time monitoring, adaptive control, dynamic decision which results in minimizing 
wastage rework and high quality overall improves process efficiency. From an industrial perspective, this 
development is a significant milestone towards smart manufacturing and zero-defect.  
However, predictive quality control comes with its own set of challenges. The limitations in data availability represent 
one of the most significant challenges identified throughout this study. In many industrial settings, data collection 
systems are fractured or not very well standardized and that is one of the reasons you can’t build strong AI-based 
models. Consultants specializing in AI, data and analytics say model interpretability is still a deal breaker for quality 
managers who have to make certain automated decisions meet IATF 16949 standards and are traceable during 
audits and certification processes. 
Another major finding concerns the human and organizational dimension of digital disruption. The efficacy of 
predictive quality systems is not only judged in terms of the accuracy of the algorithm, but also on workforce readiness 
to accept and trust AI recommendation. Accordingly, an attitudinal change towards data driven decision-making and 
collaborative human–machine interaction is necessary for reaping the benefits of intelligent quality management. 
These findings provide insights when comparing them with literature from the field, as most research has been 
focusing on preventive maintenance or process optimization and just a few studies have discussed smart- based 
predictive quality models integrated in the IATF 16949 infrastructure. The present study helps to fill this 
methodological gap and suggests an organized model that integrates elements from standardized quality 
management with cutting-edge data analysis. 
Finally yet importantly,the main limitation of this study lies in the use of simulated data and a limited sample size. So, 
it provides room for further study. Enrichment of the current model with deep learning, IoT data flow in real-time and 
digital twins simulations could contribute to an increase in predictive accuracy and decision support. Moreover, 
transfer of this framework to other manufacturing steps (like assembly, painting or final inspection) could confirm its 
industrial relevance and scalability. 

4 Conclusion 

This study presents an innovative framework designed for integration within the automotive manufacturing sector, 
specifically targeting the cutting stage of seat cover production. The proposed approach combines modeling, 
simulation, and based artificial intelligence (AI) with the Internet of Things (IoT) to create a predictive system capable 
of identifying potential defects before they occur. By developing a linear regression model fed with both simulated 
and real-world datasets, the system enables the anticipation of anomalies that could compromise product quality. 
The study focused on three critical parameters; temperature, vibration, and cutting speed; selected from literature 
and validated through the Fuzzy Delphi Method with expert input. These parameters were monitored using simulated 
dataset from real environment to ensure the acquisition of reliable and representative data. The integration of this 
data into the predictive model demonstrated that early detection of irregularities is possible, particularly in fabric 
cutting operations, thereby reducing the occurrence of defective parts and waste generation. 
In addition, this approach is compliant with the IATF 16949 quality management standard, which enables continuous 
improvement and data driven decisions. It increases the ability to respond on corrective and preventive actions as 
well as control process variations, contributing to more efficient operation and cost saving due to non-quality. 
Finally, these findings show that the automotive industry can embark in industrial revolution through integrating 
predictive models within decision-making operations. This dance of AI and IoT technologies enables the creation of 
a smart and robust supply chain, one that can transform raw production data into actionable information converting 
knowledge into business advantage to improve performance, reliability and competitive edge. 
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10 Supplementary materials 

Table 9*. Simulated dataset - complete observations 

Observation Speed (m×min-1) Temperature (°C) Vibration (mm×s-1) Defects 

1 51 70 1,6 33,49 

2 48 68 1,87 32,91 

3 52 71 2,17 34,64 

4 49 69 2,17 33,49 

5 51 71 2,09 34,57 

6 54 69 1,77 33,87 

7 47 69 2,06 33,69 

8 51 71 1,88 34,56 

9 52 72 2,47 35,26 

   10 49 69 2,35 33,87 

11 48 69 2,22 33,97 

12 52 71 1,74 34,03 

13 52 69 1,76 33,68 

14 47 69 1,54 33,20 

15 50 71 2,21 34,79 

16 49 71 1,61 34,05 

17 46 68 1,94 32,92 

18 52 72 1,7 34,03 

19 50 72 2,4 35,45 

20 46 69 1,98 32,92 

21 49 72 2,06 34,95 

22 45 69 2,2 33,18 

23 54 68 1,64 32,81 

24 50 71 2,1 33,98 

25 53 71 2,04 35,04 

26 45 71 1,7 33,01 

27 54 72 2,44 35,61 

28 47 68 2,1 33,35 

29 51 72 2,19 34,79 

30 48 72 2,38 35,12 

31 53 68 2,12 33,43 

32 47 68 1,8 32,65 

33 49 68 1,61 32,99 

34 47 68 1,96 33,34 

35 51 71 1,72 34,25 

36 49 70 1,92 33,34 

37 53 70 2,38 34,59 

38 51 68 1,82 33,49 
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Observation Speed (m×min-1) Temperature (°C) Vibration (mm×s-1) Defects 

39 46 70 1,62 33,50 

40 48 70 1,86 33,30 

41 53 68 2,41 34,11 

42 46 70 1,77 33,62 

43 54 72 2,15 35,66 

44 53 69 1,5 33,06 

45 54 69 1,85 33,69 

46 49 68 1,8 32,85 

47 46 71 1,66 33,32 

48 48 68 2,03 33,19 

49 51 71 1,98 34,80 

50 52 69 2,19 33,71 
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