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Ensuring product quality in the automotive industry becomes a technical strategi¢ challenge in the era of digital and
networked supply chains. Traditional final inspection methods, often reactive, are not sufficient to attempt the rigorous
expectations of IATF 16949. The case of covers seating industry must be at'the forefront of industrial excellence.
Evoking comfort, functionality, and aesthetics for customer, taking into account thatithe cutting area in such industry
is the focal point to loop considered as internal supplier in the covers supply chain, cditing output is the input for all
assembly lines, which means that an uncontrolled quality KPI will disturb“the manufacturing process. A hybrid Al —
based predictive quality control modeling in cutting process is used combinegexpert-based validation through the
Fuzzy Delphi Method to define the factors affecting the qualitydof cut products. The integration of data driven
prediction (Al and loT) represented in a linear-regression-based@Sutpervised learning model trained and learned with
a simulated dataset from real production conditions according t@ literature review and experts feedback to detect and
prevent failures in the early stage of production. The analysis“shows the three variates (cutting speed, cutting
temperature, vibration intensity) predefined from the literature review, were validated as input data. The results
indicate a high predictive quality accuracy since the coefficient of determination R? =0.87 and the model statistically
very significant ANOVA results. Concluding that the vibration factor have the most significant impact on quality cutting
defect. This hybrid Al-based predictive approachf{ provides an improvement lever of the smart automotive
manufacturing chains supporting data driven decisions under the IATF 16949.

Keywords: automotive industry, IATF 16949, smart supplpchain, supervised learning -linear regression, predictive
quality

HIGHLIGHTS
— A hybrid Al-based predictive model integrates Fuzzy Delphi and data-driven learning to assess cutting
quality.
— Three key process factors*=,cutting speed, temperature, and vibration—were validated as significant quality
drivers.

— The model achieved high predictive’accuracy with R? = 0.87 and statistically significant ANOVA results.

— Vibration intensity, identified as the most influential factor affecting cutting defects in automotive seat cover
production.

1 Introduction

Recently, the digitalization, of the industrial supply chain has evolved to be a pillar in present production systems.
Especially the camindustry, eharacterized by an exacting precision, stringent quality criteria and complex supplier
networks, is in theifront- grade of this change [1; 2]. The growing trend toward flexibility, traceability, and efficiency
in production has cleakly driven the rise of intelligent technology including Al and loT [3; 4]. Real-time tracking, data-
driven decision-making ‘and adaptive control are realized using these technologies [5]. In the automotive, which is
regulatgd by tight IATF 16949 requirements [6], requires a systematic quality guarantee that goes beyond traditional
testing [7; 8]. TRe digital revolution in the automotive supply chain, has founded a new era of intelligent quality
management, where connected systems and machine learning algorithms can improve efficiency, reliability and
predictivity,throdghout the production lifecycle.

Nonetheless, despite these advancements in technology, many industries still using a reactive quality control system,
which is confined to end-of-line inspection and detect after production [9]. This reactionary approach results in high
nonconformance costs, process inefficiencies and late corrective action. With increased competitiveness and higher
customer expectations, it is increasingly recognized that traditional quality assurance (QA) strategies reliant on post
manufacturing inspection are not adequate to guarantee performance, traceability, and satisfaction of the customer
[10; 11].

This has caused the industry to move towards a predictive and proactive quality paradigm [12]. This new view makes
use of real time data acquisition and Al based analytics for predicting a potential defect, adjusting process parameters
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in “real time” and feedback control to continuously improve the production performance [13; 14]. Atrtificial intelligence
has taken a leap forward in recent years and has become a key area of focus and a strategic lever for quality control
in industrial systems, since the architecture of these systems focuses primarily on fault prediction and automated
detection of non-conformities, based on real data for a practical decision-making loop [15]. Recently, three typologies
of approaches that stand out in the literature review for quality control as detailed in table 1:

Table 1. Al typologyies and their role in industrial quality control

Al Purpose and definition Industrial application Ma|r?
Typology example Benefits
1/Surface inspection_in 1/Detection
Computer Vision is an Al approach used to detect visual the paint shop.— BNMW of 40-50 ym
defects such as scratches, foreign bodies on the material, [17] defects;
Comouter deformations, color defects usig image acquisition and zero
Vis?on processing techniques [16]. This system lead to a reduction | 2/Visualinspection on defects.
in human dependency by relieving production/inspection the assembly line - BMW
operators while remaining vigilant in terms of product iIFACTORYarAI@X in 2/Reduced
conformity. assembly (plugs, plates) | assembly
[18]. errors.
Machine learning is a data-driven modelling approach used
in particular to collect data from industrial sensors with the L . .
. o e , Audie, signal detection - Reliable
. aim of predicting the probability of an event occurring. Ve ; - .
Machine BMW'Dingolfing: acoustic
. use random forests or support vector system (SVMs) as L . )
Learning . . . ’ Acoustic inspection at quality
examples of this type of system. This technology ig proagtive ;
. . . . ! the end of the line [18]. control.
rather than reactive model for implementing predictiveyaction
plans. [19]
Deep learning is a strategy use convolutional neural
Dee networks (CNN) capable of learning compléx nonlinear In-line tomography of Automatic
L P patterns. This methodology of approachfrecommended in electric motors — BMW internal fault
earning : 4 :
complex cases, for non-accessible fadlts, which are,not [21]. detection
directly visible [20].

Accordingly, predictive quality models-basedgprocess control is a natural and necessary transition towards the vision
of zero-defect production and sustainable competitive levels. The process quality is modeled using a mathematical
or algorithmic representation, incorporating factorsiinfluencing quality as a result, expressed through the number of
defects, rework and scrap, while taking inte, accountthe impact of production parameters. Well-defined and effective
integration of these models into supply chaingymakes them more intelligent, with a strategic vision. The new approach
towards intelligent supply chains js designedt@yanalyze data collected in real time on production lines, and the
combination of Al-loT will be an industrial breakthrough [22]. On the other hand, when reviewing from one article to
another, it became clear that there is féwer researches; that integrates this concept for alignment and compliance
with the required standards and the logic OfIATF 16949.

Although Manufacturing 4.0 is already well underway, quality management systems are among the last to get
automated, and they remain, one of the least predictive aspects of industrial operations. The majority of industries
continue to rely on manual origemi-automated inspection, such techniques are reactive by nature and do not stop
there until defects have been created. This reaction is resulting in delays, inefficient use of resources and high non-
conformance costs, especially in a high accuracy industry such as automotive manufacturing.

Despite of the IALF 16949being a strong reference process control and continuous improvement framework, it does
not direct into hew, digitaland intelligent technologies should be employed to reach predictive quality assurance. In
this context, the maimmotivations of this work are:

— Change being like reactive inspection-based QA systems into predictive (data driven) decision-making
Systems that can identify quality deviation before it happens.

— || Incorporating Al and loT innovations into a connected, IATF 16949-based quality model to improve visibility,
assurange and performance.

— Censtruct and verify a predication model, as a case of real usages cutting automotive seat covers to
determine which parameters of process effect defects occurrence.

— Prove how Al-based predictive can contribute to zero-defect manufacturing, and to process improvement in
the automotive industry.

In view of these challenges as well as the gaps identified, this study seeks to make a contribution towards an
intelligent IATF 16949-compliant supply chain model, taking the case of an automotive accessory production line for
car covers [23] in the cutting process. Developing an intelligent supply chain model that benefits from literature review,
the knowledge of experts integrating Fuzzy Delphi approach [24] to choose the variates affecting number of defects
in cutting area. In addition, the use of Al-based predictive quality control in order to achieve the reduction of time and
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waste inspection, increase customers’ satisfaction and has full compliance with IATF 16949. The model combines
simulation data and linear regression analysis in the identification of key process variables affecting defect generation
[25]. Through detecting reasons of non-conformity and predicting, the introduced methodology exhibits how Al
supervised learning can convert traditional quality management from reactive into a predictive, proactive, self-
optimizing one. In such a way, the study aims to serve theoretical development as well as pragtical needs for
application of a framework that can be customized and used on the shop floor in industry practice.

In the end, this research illustrates how the combination of Fuzzy Delphi method, Al, 1oT and IATF 16949principles
can change the future landscape of automotive quality management.

2 Materials and methods

As the automotive industry continues to grow, it faces increasing challenges and has beecome more demanding in
terms of compliance with ISO 9001 and IATF 16949 standards [26]. Therefore, in a tough competitive industrial
context, the primary measure of the performance for intelligent supply chains is the quality indicator [27], while in this
notorious digital transformation, the integration of artificial intelligence (Al) and inteFRetof things (IoT), also advanced
mathematical models make it possible to anticipate defects and reinforce quality control. This article proposes a
predictive simulation model integrating Al-based and loT to improve the detection of non-conformities in a high-
performance supply chain.

2.1 Description of the industrial process studied

The process targeted in our article, is the cutting process; an essential phase in‘the design and accessory automotive
industry; more specifically, the industry of automotive seat covers. In order to have a clear vision of such industry
process, the figure 2 illustrates the overall process flow of alitomotive cover manufacturing, from raw material
reception to final delivery. The process begins with the receptionofincoming materials, followed by unloading and
initial storage under controlled conditions to ensure material traceability and compliance with quality standards.
Subsequently, material flows are managed and directed toward cutting‘@perations. For the cutting phase, as a crucial
sub-operation in the manufacture of the cover product, the materials are cut in the form of raw material rolls on
specific automated machines (CNC) [28]. Then caomes the inspection phase of the cut pieces, checking the
dimensional accuracy of the piece, the irregularity ofghe cutythe conformity of the internal shapes in the cut piece...etc
[16]. The precision of the cut depends on the parametefs andgeonditions of the CNC machine, which has a direct
impact on the final quality of the cover. The validatedjeut comiponents are transferred to the cover assembly lines,
where individual elements are assembled before proceeding to final cover assembly. At this stage, an additional
quality control and packaging process is perfenmed to ensure conformity with dimensional, aesthetic, and functional
requirements. Finally, the finished covers are managed through pool stock logistics, enabling optimized inventory
control and synchronized deliveries to downstieam assembly plants. This structured process flow supports early
defect detection and provides a suitable ftamework for implementing predictive quality control under IATF 16949
requirements. The global covers manufacturingyprocess is presented in figure 2 [29].

| Step 1 : Material reception |

| Step @ : Unloading & controlled storage |

Step 3 : Flow
management to
cutting operations

| Step 4 : Control & storage of cut pieces |

| Step 3 : Covers aszembly lines |

| Step 6 : final cover assembly |

Step 7 :
Controlpackaging

& deliveriez
<>Decision,f(30ntrol
|:|Operations

Fig. 1. Process functional decomposition of a cover
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Fig. 2. Covers manufacturing process

2.2 Intelligent production environment simulation: Fuzzy Delphi Method choosing studied parameters

dataset created to represent an intelligent
tinuous measurement of critical variables that
ts detected on the cut parts inspected at the

In the absence of real data from an industrial environment, a
production line, equipped with 0T sensors. These sensors ena
can influence product quality the target variable is the number of
end of the line.

The three variables selected as critical factors according to the literature review are:
— Cutting speed (in mxmin-1): direct impact o ing accuracy.

ture, and a good basis for study, we will use the Fuzzy Delphi
or confirming selected parameters. This is the role of the classic

approach, a decision-making method for valid
i the subjectivity of judgment and human uncertainty from the

Delphi method, coupled with fuzzy logi
Delphi approach.

This method begins with the selection of par ters as already mentioned and reviewed in the literature in the fields
of cutting, the textile and clothing industry, CN achine operation, and its role. Next, a Likert scale questionnaire
ho will be selected using Delphi methods. A minimum of 10 experts with at
emic level will be required as criteria for selecting the panel of experts,
which will then allow us to collect the experts' judgments in a more objective and qualitative manner. We will transform
the qualitative judgments into quantitative data using the fuzzy Likert scale as shown in the table 2 below [30], by
assigning a fuzzy value in
is presented in figure 3, this

ue, the maximum assessment value

M

Fig. 3. Triangular fuzzy number
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Table 2. Seven points of fuzzy scale

Qualitative terms Acronym Crisp Scale Fuzzy Values
Very weakly important VWI 1 (0.0,00,0.1)
Weakly important WI 2 (0.0,0:1,0.3)
Low important LI 3 (0.1,0.3,0:8)
Moderately important Mi 4 (0.3,0.5,0.7)
High important HI 5 (0:5,0.7,0.9)
Very high important VHI 6 (0.7,0.9,1.0)
Extremely important El 7 (079,1.0,1.0)

The following step after collecting expert opinions is to aggregate fuzzy opinions known _as the Fuzzy Geometric
Mean Value by applying the following formula, where n is the number of expertgand'i the factor studied:

% 1 1 1

Aj=—¥ L, Xm, X (1)
Continuing our approach with the defuzzification step, we convert fuzzy values into precise numbers known as crisp
value C; , which are the overall fuzzy scores for each factor, which can be expreéssed through:

l+m+u

G =" (2)

As a final step, the acceptance threshold for the parameter to be retained must be greater than or equal to the
threshold value of 0.5 named cutoff value a; otherwise, it is eliminatedjthis cutoff threshold value is commonly used
in Fuzzy Delphi studies to ensure consensus and relevance among experts [33].

- If ;2 0.5, the factor is accepted.
- If ¢; < 0.5, the factor is rejected.

2.3 Model framework

The model used in this study is a multiple linear regression’[34] as a method for supervised learning, qualified as a
transparent and interpretable predictive modeliiwhich will models the relationship between process variables (input)
and the number of defects (output).

The model is expressed as follows:
Defects = By + B, * Cut speed + [, * Temperature + f3 * Vibration + ¢ (3)

Where:
—  PBo: constant (interception)
- B1, B2, Bs: coefficients of variables, representing their impact on defects
— € epsilon is the error term.

For the data simulation part that,comes just after the validation of parameters and model definition, real production
conditions were usegto create a database of 50 observations. Each valid parameter is associated with a well-defined
range based on industrystandards, literature review, and feedback from the panel of pre-selected experts, as well
as adding the accordancetgjintelligence expertise from machine operators; we arrived also at the realistic coefficients
for each parameter.

To enhance realism,;ae add a random noise to our model to obtain output data on the number of defects. This noise
will represent sensor inaccuracies, micro-variations in machines, and environmental disturbances.

In briefgthe developed approach combines expert-based validation and data-driven prediction to set up a hybrid Al-
based predictive\quality control model. Deep learning methods can be highly accurate but require large datasets and
computing power; our approach is simpler and interpretable, suitable for smaller datasets. Taking into account the
limitationgyin data availability represent one of the most significant challenges identified throughout this study.

The FDM was employed as the first phase for determination and validation of critical process parameters influencing
the cutting quality. A panel of experts assessed the relevance and importance of each factor. Using linguistic scales
converted in to fuzzy number values. After several consensus and defuzzifications, three key factors were
determined: cutting speed, cutting temperature and vibration intensity. In the second stage, a linear-regression-based
supervised learning model is trained with the validated preference set obtained at first stage as input feature vector
for the quality indicators (number of defects) and predicted output values. Quality outcomes are predicted using
machine-learning model learned on simulated data, ensuring that this model is interpreted and meets the
requirements of IATF 16949 in an industrial world that relies on Al-based solutions.
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The architecture of our system is based on the concept of intelligence, with the aim of creating an intelligent supply
chain through anticipation and early detection. Figure 4 below presents the model architecture.

Input Parameters
(Fuzzy Delphi Method+Simulated
cutting data)

3

Data preprocessing
(normalization, noise)

}

Predictive model
(mulltiple linear regression)

Y
Quality decision& corrective actions
(parameters adjustement/tool

change/ maintenance alert...)

Fig. 4. Architecture model

3 Results and discussion

3.1 Modeling and simulation results

3.1.1 Building the production line simulation model: Fuzzy D

j Method to choose factors

In this section, we focused on a production line in the cutting area for the manufacture of car seat covers. To carry

out this study and achieve our objective, we first nee
cut product. To do this, we will use the fuzzy Delphi

validate the study parameters that affect the quality of the
. Applying the FDM method, we selected 10 experts to
ration, in a literature-based approach. The table 3 below
ed based on different criteria, including professional
than 4 years, direct involvement in cutting or quality

Industry
Expert Position Experience Selection criteria
(years)
Plant Operations Extensive experience in plant-level operations
Expert 1 P 18 and decision-making related to cutting and
manager -
coordinatio assembly processes
Quality Quality systems, IATF Direct responsibility for quality monitoring,
Expert 2 ; . 6 . .
coordinator 16949 compliance audits, and non-conformity management
utting process . . - .
Process : Hands-on experience in defining cutting
Expert 3 ; eering and 9 : ; .
engine A parameters and improving process stability
optimization
Quality Manufacturing quality 6 Involvement in defect analysis, root cause
engineering analysis, and continuous improvement
CUSt.O mer Interface between customer expectations and
requirements and 7 internal quality performance
quality feedback q yp
Production planning 10 Operational expertise in managing production
pager and execution flow and defect prevention
Expert 7 ant Quality Plant-level quality 12 Oversight of quality performance and
P manager strategy implementation of IATF 16949 standards
Supply chain Logistics and material Expertise in material traceability, supplier
Expert 8 8 S .
manager flow management coordination, and inventory control
Technical Technical systems Experience in machinery performance,
Expert 9 and industrial 10 maintenance coordination, and technical
manager . .
equipment problem-solving
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Industry
Expert Position Area of expertise Experience Selection criteria
(years)

Supplier quality
assurance
engineer

Expert
10

Supplier quality

5
management

After collecting the responses from our collaborators in this study, the Fuzzy scale table is used to convert the data
and produce quantitative values in the form of triangular numbers. Table 4 below summari he qualitative results
of the experts' assessments, and Table 5 shows the conversion into fuzzy values.

Table 4. The expert’s qualitative assessment

Factor Expert 1 Expert 2 Expert 3 Expert 4 xpert 5
Cutting Speed El El HI VHI
Temperature HI MI VHI El
Vibration VHI El MI HI
Factor Expert 6 Expert 7 Expert 8 Expert 9 Expert 10
Cutting Speed HI VHI MI I HI
Temperature VHI HI HI HI Ml
Vibration VHI VHI El HI

Table 5. Defuzzification res

Factor Expert 1 Expert 2 Expert 3 Expert 4 Expert 5

Cutting speed (0.9,1.0,1.0) (0.9,1.0,1 0.5,0.7,0.9) (0.9,1.0,1.0) (0.7,0.9,1.0)
Temperature (0.5,0.7,0.9) 0.9,1.0) (0.7,0.9,1.0) (0.9,1.0,1.0)
Vibration (0.7,0.9,1.0) . .3,0.5,0.7) (0.5,0.7,0.9) (0.5,0.7,0.9)
Factor Expert 6 Expert 8 Expert 9 Expert 10

Cutting speed (0.5,0.7,0.9) (0.3,0.5,0.7) (0.5,0.7,0.9) (0.5,0.7,0.9)
Temperature (0.7,0.9,1.0) (0.5,0.7,0.9) (0.5,0.7,0.9) (0.3,0.5,0.7)
Vibration (0.7,0.9,1.0) (0.7,0.9,1.0) (0.7,0.9,1.0) (0.9,1.0,1.0) (0.5,0.7,0.9)

After completing the defuzzification pro , we will now proceed to calculate the parameters associated with the
analysis: the fuzzy geometric mean value (FGMV) and the fuzzy score as a crisp value (C). Table 6 below shows the
results of the fuzzy Delphi analysis. According to the results obtained in this table, all defuzzification values for the
analyzed factor exceed th a, which means that the fuzzy score (C) >= 0.5. These results prove that all
measured elements are acce such, industry experts confirm our preselected parameters.

Table 6. Fuzzy Delphi analysis result

Factor Fuzzy Score (C) | Threshold cutoff value Expert Agreement
Cutting speed 0.793 0.5 Accept
0.737 0.5 Accept
0.64, 0.82, 0.94 0.8 0.5 Accept

put parameters that affect the quality of the cut product, which visualized in terms of the number

for each parameter at this stage, with the help of industry experts familiar with the cutting process. Using interviews,
which provided us with plausible ranges, as well as relevant basic tools such as CNC machine manuals [35] and
studies on CNC cutting, textiles, and clothing those focusing on the production of automotive seat covers [16]. Table
7 below summarizes the realistic ranges identified for the remainder of our study on the cutting process.
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Table 7. Plausible ranges of variables in the cutting process

Variable Type | Realistic range Unit Justification
Cutting speed | Input 45 _ 55 mxmin-1 In line with industrial CNC machines for automotive fabrics [36]
and experts
Temperature | Input 65— 75 °C Basec_i on experts, engine temperature and “CNC cutting
machines [37]
Vibration Input 1.5-25 mmxs-1 | According to experts.

3.1.2 Identification of expected relationships between inputs and outputs
In this case, we consider that the defects are linearly dependent. The regression model is‘expressed as follows:
Defects = By + B, * Cut speed + B, * Temperature + ;3 * Vibration + ¢ (4)

Where:
—  Po: constant (interception)
— B4, B2, Ba: coefficients of variables, representing their impact on defects
— € is the error term.

Based on the literature and industrial feedback from our panel of experts andiaccording to intelligence expertise from
machine operators, we arrived at the realistic coefficients as detailed in Tabley8. In order to make the simulated
dataset more realistic and representative of an industrial envirohment, a random noise component added to the
generated data. This noise simulates the natural variability observed infdeal production systems, which can arise from
sensor imprecision, material heterogeneity, or environmental fldetuations. The amplitude of this noise was set to
10.5, corresponding approximately to 5% of the total range of thetarget variable (number of defects). This level of
variability is consistent with industrial processes that are relativelypstable but still subject to small random
disturbances.

Table 8. Regression model coefficient
Coefficient Value DW] l
Bo 5 Basic defects, even if everything is optimal
B 0.1 Low-speed influence
B2 0.3 Moderate temperature influence
€ 0.5 Noise, random value to simulate industrial variability

As a result, the equation (5) is @linear formula used to represent the relationship between sensors and defects:
Defects = 5+ 0.1 * Cut§peed + 0.3 * Temperature + 1.5 * Vibration + noise (5)

The brief is to determine the number of defects occurring well in advance of the end-of-cutting phase, using the three
sensors selected for data,collection: cutting speed (in mxmin-1), machine temperature (in °C) and cutting vibration
(in mmxs-1).

A data simulation is realistically\generated as a set of 50 observations, since real data are not available, under the
assumption that temperature and Vvibration are two criteria influencing the number of defects. Whereas to be more
realistic, it is necessary4e,add noise as demonstrated in our article in the previous section, a feature encountered in
the industrial wesldsat.the tilne of production. So as to model these relationships, we have opted for multiple linear
regression modelling following equation (5).

The table 9 below is“agsample of 10 observations shows the simulation generated to train the model, the whole 50
observations detailed in Appendix. The simulation developed from plausible ranges of variables in the cutting process
and theflinearfermula predefined. As output the number of defects and the influencing characteristics: temperature,
speed and vibration taking into account the noise in the calculation on the formula.

Table 9. Simulated dataset - 10 observations

ObM)n Speed (mxmin-1) Temperature (°C) Vibration (mmxs-1) Defects
1 51 70 1,6 33,49
2 48 68 1,87 32,91
3 52 71 2,17 34,64
4 49 69 2,17 33,49
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Observation Speed (mxmin-') Temperature (°C) Vibration (mmxs-1) Defects
5 51 71 2,09 34,57
6 54 69 1,77 83,87
7 47 69 2,06 33,69
8 51 71 1,88 34,56
9 52 72 2,47 35,26
10 49 69 2,35 33,87

After generating the above dataset, the relationship between defects and sensors is then automatically learned by a
linear regression model as a supervised learning, which finds the most relevant coefficientsyfrom the data. After
training, the model delivers the following results detailed in the table 10.

The regression results show a very good predictive accuracy, since the coeffigient of determination R2 =0.87. The
impact of each variable as shown differs from one variable to another; the{ variable“that’comes first in terms of
influence on the number of defects, with a coefficient of 1.50, is vibration, followedfby temperature, with a coefficient
of 0.31. While the results show, that speed has a weaker impact on the number of ‘defects increase (0.095). Which
means an increase in the vibration that exhibits the highest regression €oefficient parameter; leads to higher defect
probability. Moreover, Regarding the analysis of variance ANOVA F=109:21 very high value demonstrates and
confirms that the predictive model is excellent, and the p-value is well below the threshold of 0.05 with a value of
6.162*102", validating that the model is statistically very signifigant. Automatically we reject the null hypothesis,
although the variables in our study (speed, temperature, vibratign) haye a significant explanatory relationship on the
number of defects. From these results, the initial intuition that thejvibration variable plays a critical and crucial role in
cutting quality as the primary contributor to defect occurrence is confismed.

Table 10. Regression statistics report

Regression statistics
Coefficient of multiple determination 0,93642455
Coefficient of determination R? 0,87689093
Coefficient of determination R? 0,86886208
Standard error 0,29808179
Observations 50
Variance Analysis ANOVA
Dfegree of Sum of Average square E Critical value
reedom sQuares of F
Regression 3 29,1128193 9,70427309 109,21747 6,16E-21
Residuals 46 4,08722672 0,08885275
Total 49 33,200046
Lower limit | Upper limit
Coefficients Stzr:rcci)?rd Statistics t Probability con f]icgcrance confl;gcrence
level = 95% | level = 95%
Constant 4,59633248 | 2,09904211 2,18972858 | 0,03365345 |0,37117986| 8,8214851
Cutting Speed 0,09561634 0,0162588 5,88089616 4,37E-07 |0,06288906 | 0,12834362
Tempesature 0,30979236 | 0,03074701 10,075529 3,20E-13 |0,24790185| 0,37168288
Vibration 1,50393887 | 0,16643361 9,03626908 9,22E-12 |1,16892539 | 1,83895235
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Fig. 5. Residual graph

Figure 5 showing the distribution of residuals versus predicted values, illustrating the fit"of the regression model.
Which means that the predicted defect rates closely match the observed values, with residwals ranging mostly
between -0.5 and +0.5. This indicates a stable and unbiased model performance. N@jsignificant trend detected in the
residual distribution, confirming the adequacy of the regression model for predictive quality estimation. These results
show that the integration of the Al system, even in a simulated context, makesgtpossiblefaibe proactive in predicting
defects before production, and to move on to the final visual inspection stagejfihis system can be defined as a
strategic industrial lever for quality improvement, meeting IATF 16949 standards.

3.1.3 Integrated Al-Based architecture for predictive monitoring anddecision making in cutting operation

The proposed architecture aims to predict the quality deviations occurring during, the automated cutting process of
automotive fabrics and synthetic materials. As illustrated in Figure 6, the system architecture is composed of four
main layers: data acquisition, preprocessing, prediction, and degision support.
In the data acquisition layer, loT-based sensors mounted on “the, adtomated cutting station continuously measure
process parameters such as cutting speed, tool vibration, and cutting,temperature. These parameters are known to
have a direct influence on the cut quality and material integrity. Sin€e real industrial data were confidential and
partially unavailable, a synthetic dataset was simulated to replicate realistic production variability. A Gaussian noise
of £0.5 was added to each variable to represent natugal measurement uncertainty and equipment fluctuations.
The preprocessing layer performs normalization andfoutlienfiltering to ensure model stability. Data are synchronized
and converted into time-series form, allowing statistical gorrelation between parameters and cut quality indicators.
In the prediction layer, a multiple linear regression model wasftrained using regression analysis tool to estimate the
Quality KPI (number of defects) as a function of vibration‘amplitude, cutting speed, and temperature. The regression
analysis yielded a determination coefficient®R2=0.87, showing a strong predictive relationship. The ANOVA test
confirmed the statistical significance of the modehwith p<0.001.Finally, the decision and feedback layer compares
predicted and actual defect rates. Whengagdeviationybeyond the tolerance threshold is detected, the system can
recommend real-time adjustments such asyreducing cutting speed, adjusting tool temperature, or triggering blade
maintenance, taking into account that vibratiomyparameter is the primary contributor of defects occurrence in cutting
area. This predictive control approdeh supports [ATF 16949 requirements by enabling proactive quality management
and minimizing scrap in the automotive,supply chain.

Preprocessing

b Normalization and Filtering P Multiple linear regression b

Fig. 6. Al-Based,predictive model architecture for the automated cutting process in automotive manufacturing

Data Acquisition Prediction Decision suppert

Cutting speed
—Tool vibration

Cutting, temperature

leT Recommandation

Sensor

For the integration“@f,Al in the decision aid, we have built two simulation scenarios as detailed in table 11:

Table 11. Simulation Scenarios

Scenario A: without Al/loT combination

Scenario B : with Al/loT combination

Production operates in the traditional
way, Where guality defects are only
visualized after final inspection of the cut
product, no real-time processing of
sensor data.

The predictive model receives sensor data for each cycle and anticipates
the number of expected faults. This information is used to trigger
preventive actions, to go beyond the corrective mode and optimize
operation; if the threshold is exceeded, actions can be triggered (slow
down the line, check the machine, etc.).

3.2 Discussion

Following the development of Hybrid Al-based predictive quality model, the results show promising value in migrating
conventional quality management behavior from automotive supply chains towards intelligent systems. The results
suggest that the combination of linear regression as a supervised machine learning method in our case study and
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loT-based data acquisition can lead to an enhanced understanding of how the process variables are related to defect
creation. More notably, validation of the factors affecting product quality and conformity using Fuzzy Delphi Method
demonstrates that data-driven analytics is capable to anticipate imperfections before they happen.

A sensitivity analysis was conducted to evaluate the relative influence of key cutting parameters, namelytemperature,
vibration, and cutting speed, on product quality. The analysis is based on the magnitude and sign of the regression
coefficients obtained from the predictive model. The results indicate that vibration is the most infldential parameter
affecting defect occurrence. Small variations in vibration levels lead to significant changes in the predigied defect
probability, which can be explained by its direct relationship with tool wear, machine instability, and{surface
irregularities during cutting operations. Temperature parameter shows a moderate influence on quality performance.
Elevated temperatures tend to accelerate material deformation and tool degradation, indirectly increasing defect
rates, although its impact remains less pronounced than that of vibration, cutting speed exhibitsdghelewest sensitivity
among the analyzed parameters. While extreme speed values may affect surface quality @ndfdimensional accuracy,
its influence within the operational range considered in this study is comparatively limited.

These findings highlight the importance of prioritizing vibration monitoring and control in predictive quality strategies.
From an industrial perspective, this allows maintenance and process optimizatiopfeffarts to focus on the most critical
parameter, thereby improving efficiency and compliance with IATF 16949 requirements.

Therefore, this result demonstrates the advantage of predictive quality controlin, ageordance with the one of a risk-
based thinking and continuous improvement philosophy as defined by IATF 16949. Unlike traditional inspection
systems which only identify issues after products are made, predictive-based as opposed to the traditional static and
reactive control, it enables the real-time monitoring, adaptive control, dynramic decision which results in minimizing
wastage rework and high quality overall improves process efficiency.“Erom an industrial perspective, this
development is a significant milestone towards smart manufacturing and zero-defect.

However, predictive quality control comes with its own set of challenges. The limitations in data availability represent
one of the most significant challenges identified throughout this study. In many industrial settings, data collection
systems are fractured or not very well standardized and that is one of the reasons you can’t build strong Al-based
models. Consultants specializing in Al, data and analytics say modelinterpretability is still a deal breaker for quality
managers who have to make certain automated decisions meet IATF"16949 standards and are traceable during
audits and certification processes.

Another major finding concerns the human and arganizational dimension of digital disruption. The efficacy of
predictive quality systems is not only judged in terms of thefaccuracy of the algorithm, but also on workforce readiness
to accept and trust Al recommendation. Accordinglyganfattitudinal change towards data driven decision-making and
collaborative human—machine interaction is necessaryor reaping the benefits of intelligent quality management.
These findings provide insights when comparing them with literature from the field, as most research has been
focusing on preventive maintenance or procesg,optimization and just a few studies have discussed smart- based
predictive quality models integrated in the IATE, 16949 infrastructure. The present study helps to fill this
methodological gap and suggests af organized“model that integrates elements from standardized quality
management with cutting-edge data analysisy

Finally yet importantly,the main limjtation of thistudy lies in the use of simulated data and a limited sample size. So,
it provides room for further study. ERrichment of the current model with deep learning, loT data flow in real-time and
digital twins simulations could contribute to an increase in predictive accuracy and decision support. Moreover,
transfer of this framework to other manufacturing steps (like assembly, painting or final inspection) could confirm its
industrial relevance and scalability.

4 Conclusion

This study presentsgan innovativeiframework designed for integration within the automotive manufacturing sector,
specifically targeting the, cutting stage of seat cover production. The proposed approach combines modeling,
simulation, and based artifigial intelligence (Al) with the Internet of Things (loT) to create a predictive system capable
of identifying potential"defects before they occur. By developing a linear regression model fed with both simulated
and real-world datasets, the system enables the anticipation of anomalies that could compromise product quality.
The study focused on‘three critical parameters; temperature, vibration, and cutting speed; selected from literature
and validat€dithrough the Fuzzy Delphi Method with expert input. These parameters were monitored using simulated
dataset from real environment to ensure the acquisition of reliable and representative data. The integration of this
data into the predictive model demonstrated that early detection of irregularities is possible, particularly in fabric
cutting'operations, thereby reducing the occurrence of defective parts and waste generation.

In additionithiS'approach is compliant with the IATF 16949 quality management standard, which enables continuous
improvement and data driven decisions. It increases the ability to respond on corrective and preventive actions as
well as control process variations, contributing to more efficient operation and cost saving due to non-quality.
Finally, these findings show that the automotive industry can embark in industrial revolution through integrating
predictive models within decision-making operations. This dance of Al and loT technologies enables the creation of
a smart and robust supply chain, one that can transform raw production data into actionable information converting
knowledge into business advantage to improve performance, reliability and competitive edge.
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Table 9*. Simulated dataset - complete observations

Observation Speed (mxmin-1) Temperature (°C) Vibration (mmxs-1) Defects
1 51 70 1,6 33,49
2 48 68 1,87 32,91
3 52 71 2,17 34,64
4 49 69 2,17 33,49
5 51 71 2,09 34,57
6 54 69 1,77 33,87
7 47 69 2,06 33,69
8 51 71 1,88 34,56
9 52 72 2,47 35,26

10 49 69 2,35 33,87
11 48 69 2,22 33,97
12 52 71 1,74 34,03
13 52 69 1,76 33,68
14 47 69 1,54 33,20
15 50 71 2,21 34,79
16 49 71 1,61 34,05
17 46 68 1,94 32,92
18 52 72 1,7 34,03
19 50 72 24 35,45
20 46 69 1,98 32,92
21 49 72 2,06 34,95
22 45 69 2,2 33,18
23 54 68 1,64 32,81
24 50 71 2,1 33,98
25 53 71 2,04 35,04
26 45 71 1,7 33,01
27 54 72 2,44 35,61
28 47 68 2,1 33,35
29 51 72 2,19 34,79
30 48 72 2,38 35,12
31 53 68 2,12 33,43
32 47 68 1,8 32,65
33 49 68 1,61 32,99
34 47 68 1,96 33,34
35 51 71 1,72 34,25
36 49 70 1,92 33,34
37 53 70 2,38 34,59
38 51 68 1,82 33,49
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Observation Speed (mxmin-") Temperature (°C) Vibration (mmxs-1) Defects
39 46 70 1,62 33,50
40 48 70 1,86 ,30
41 53 68 2,41 11
42 46 70 1,77
43 54 72 2,15
44 53 69 1,5
45 54 69 1,85
46 49 68 1,8
47 46 71 1
48 48 68
49 51 71 1,9
50 52 69 2,19
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