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The paper presents a study on the relationship of the maximum deflections and fre-quencies of the 
fundamental tone of transverse oscillations of a number of composite two-layer plates of a round 
shape, rigidly pinched and pivotally supported on the contour. In the course of work we determined 
the maximum deflectionW0 from the action of the static load and the natural oscillation frequency ω 
of the composite plates. We defined the proportio-nality coefficient K. According to the results, we 
designed the graphs of the maximum def-lection change and the frequency of natural oscillations 
when changing the thickness of one layer of the composite plate.
Key words: Composite plate, Maximum deflection, Frequency of natural oscillations, Coefficient of 
plate proportionality

INTRODUCTION

The determination of static and dynamic char-
acteristics reduces to determining the deflec-
tions and frequencies of oscillations of systems 
in solving appropriatedifferential equations. The 
functional connection between the maximum de-
flection and the fundamental tone frequency of 
natural transverse oscillations of elastic isotropic 
plates was proved by V.I. Korobko [02, 03].
The differential equation of the plate transverse 
deflection has the form:

(2.1)

With the use of biharmonic operators, the equa-
tion takes the form:

(2.2)

where W = W (x, y) is the deflection function of 
the plate at the transverse deflection; d2 d2 is a 

biharmonic operator; D=EH3/(12(1-ν2))is cylindri-
cal stiffness of the plate; q(x, y) is the law of the 
transverse load change. The differential equa-
tion of plate free oscillations:

(2.3)

(2.4)

where W = W (x, y, t) is the deflection function of 
a freely oscillating plate; m is the mass per unit 
area of the plate; E, are respectively the modu-
lus of elasticity of the material and the Poisson’s 
ratio.
If the oscillations are harmonic:

(2.5)

then equation (2.1) can be transformed to the 
following form:
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or 

Let us represent the deflection function as a 
product of the maximum deflection W0by the 
unit function f (x, y) and substitute it in the dif-
ferential equations of transverse deflection and 
free oscillations of the plates:

W(x,y)=W_0 f(x,y) ;  

It should be noted that the exact solution of these 
differential equations is valid only in the frequent 
cases of plate forms and boundary conditions, 
therefore, in practice, approximate methods of 
solution are mainly used.
If we assume that the plate is under a uniformly 
distributed load q, then having integrated equa-
tions (2.6) over the entire area of the region, and 
having performed the necessary transforma-
tions, we get:

(2.6)

(2.7)

The deflection function W(x, y) can approximate-
ly be put downin a one-parameter form in the po-
lar coordinate system:

W(x,y)=W0 f(x,y)=W0 g[t/r(φ) ]=W0 g(ρ) , 

where r = r(φ) is the equation of the contour of 
the plate in the polar coordinate system, t and φ 
are polar coordinates, ρ = t/r(φ) is the dimension-
less polar coordinate.
This function describes a surface which level 
lines are similar to the region contour and are 
similarly located. The representation of the func-
tion of deflections in this form is justified by the 
fact that through it we can write down the exact 
solution to the problem of transverse deflection 
of a rigidly pinched elliptical plate under the ac-
tion of a uniformly distributed load.Since just in 
the only case it is possible to represent the real 
deflection function in the form of a one-param-
eter function (2.8), further results are of an ap-
proximate nature.
We transform the integrals in (2.7), taking into 
account the deflection function in form (2.8).

(2.8)

(2.9)

Multiplying and dividing the right-hand side by 
r2, we get after the transformations:

(2.10)

Completing the transformation of the integral of 
the biharmonic operator according to [84], we fi-
nally write:

(2.11)
where

(2.12)

The sign of the approximate equality in (2.11) 
appeared under the transformation of integrals 
by means of the Bunyakovsky inequality [05].
We substitute the integrals (2.9) and (2.11) into 
the expressions (2.6). After the necessary trans-
formations, we get:

(2.13)

Since all the values of the definite integrals occur-
ring in the expressions (2.13) are constant num-
bers depending on the accuracy of the choice 
of function g (f), they can be represented as the 
proportionality coefficients Kw, Kω and B. Then

(2.14)
where  

Strictly speaking, the signs of approximate equal-
ities should be put in expressions (2.14), in view 
of (2.12) and the approximation of function g (f).
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Let us multiply the expressions (2.14) to each 
other:

(2.15)

Taking into account that the coefficients Kw and 
Kω depend on the shape of the plate, the follow-
ing regularity can be obtained from the expres-
sion (2.15): for elastic isotropic plates of identical 
shapes with homogeneous boundary conditions, 
the product of the maximum deflection W0 from 
the action of the uniformly distributed load q per 
square of their fundamental frequency of trans-
verse oscillations in the unloaded state, ω2with 
accuracy up to the dimensional factor q/m is a 
constant.Thus, it is mathematically and rigor-
ously proved that for the whole set of plates with 
homogeneous boundary conditions the product 
W0∙ω2 will be represented by a single curve. An 
important feature of the formulated regularity is 
the fact that the product W0∙ω2, which is consid-
ered in it, does not depend on the flexural rigidity 
and dimensions of constructions.
Forms of plates can be very diverse – from round 
to infinitely elongated. It is quite appropriate to 
expect that the boundary values of the curve K = 
W0∙ω2 will correspond exactly to these plates.
A large number of works are devoted to the cal-
culation of solid and composite plates [1, 13, 15, 
16], but no research has been carried out so far 
on the relationship between the static and dy-
namic parameters of the construction. In [4-12], 
the dependence (2.15) was considered for com-
posite plates.

CALCULATION OF COMPOSITE PLATES

The calculate construction is a round plate in di-
ameter, 1 m in diameter, consisting of two layers. 
In the work, we calculate several plates, the bot-
tom layer of each of which has a thickness of 10 
mm, and the upper layer is different: 10, 11, 12, 
13, 14, 15, 16, 17, 18, 19, 20, 30, 50 and 100 
mm. Plates with hinged support and rigid pinch-
ing along the contour are considered.
Each layer of the plate is divided into finite ele-
ments, obtained by dividing the surface of the 
plate by circles with a spacing of 100 mm - by 10 
rings, and by rays from the center, which divide 
the plate into 40 sectors.

Figure 1: Calculation scheme of the plate

The rigidity of the transverse connections is con-
stant, and it is ЕАс= 644 кH. All characteristics 
of the layers are taken for the chipboard plate: 
the average density is ρ = 720 kg / m3, the elas-
tic modulus at bending is E = 2600 MPa.For dy-
namic calculation, the masses in the units were 
assembled in accordance with the volumetric 
weight and the load area of the unit, taking into 
account the thickness of the plate layer.With 
static calculation, a uniformly distributed load q = 
1 кН/м2was applied to the upper layer. The stud-
ies were carried out by the finite element method. 
The distance between the layers was assumed 
to be equal to the distance between the centers 
of gravity of the layers.
Numerical studies were carried out with the help 
of the SCAD program [14]. In the course of the 
studies, the maximum deflection W0 and the 
frequency of free transverse oscillations ω were 
determined. The results of calculating the plates 
are given in Table 1. According to Table 1, the 
graphs of the change in the maximum deflec-
tions and oscillation frequencies in the investi-
gated plates and the proportionality coefficient K 
were built. The deviation of the actual value of 
the coefficient K from the theoretical value was 
determined by the formula:
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Table 1: Results of calculating plates with different thickness of layers

Figure 2 : Graphs of the change of the maximum deflections W0 and the frequencies of the
natural oscillations ω of the plates depending on the change in the thickness of one of the layers of the two-

layer plate
392, 458
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Figure 3: Graphs of the coefficient K change depending on the change
in the thickness of one of the layers of a two-layer plate in comparison with its analytical value.

CONCLUSION 

As a result of numerical investigation, we deter-
mined that as the thickness of one of the layers 
of the composite plate increases, the frequency 
of its free oscillations increases and the deflec-
tion decreases, that is, the rigidity of the plate 
increases. Proportionality coefficients K, which 
were received in the calculation, differ from ana-
lytical values with a discrepancy of not more than 
4.3%.
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