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A new approach to determination of the most critical multi-state components in multi-state systems is presented. 
The approach is based on solving an appropriate reliability optimization problem. The consideration is restricted on 
coherent and homogenous systems. Multi-state components may have different and distinct states which vary from 
complete failure to perfect functionality. The number of possible states is fi xed and the same for all components and 
the system as a whole. The states correspond to different performance levels of components and the system. It is 
supposed that for each component state the corresponding probability and cost is known and that a higher state im-
plies a higher cost. Further on, it is supposed that states of components are mutual statistically independent random 
variables. An original mathematical model for reliability calculation is developed and a corresponding optimization 
problem for identifying the most critical components is formulated and solved on numerical example.
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INTRODUCTION

Reliability Centered Maintenance (RCM) is one of the 
effective approach for determining the maintenance pro-
grams in practice. This approach tends to identify the 
components that are critical for the system reliability and 
to direct maintenance efforts towards these components 
[17]. Therefore, it is important to understand the physics 
of failure of a system and to understand the impact of 
component reliability on system reliability. Starting from 
Birnbaum [02] and Vesely [13], a lot of different approach-
es to treating component importance, called importance 
measures, have been developed and reported [05]. Most 
of these approaches rank the system components ac-
cording to calculated values of a given importance mea-
sure. The components with higher rank are then consid-
ered the most critical. However, they rank only individual 
components’ infl uence and do not consider the infl uence 
of combinations or groups of components on system re-
liability [18].
The majority of importance measures refer to systems 
and their components with two (binary) states: opera-
tional state and failed state. However, different compo-
nents’ degradation states between perfect functionality 
and complete failure can appear in many systems. Such 
components are called multi state components. Those 
components’ degraded states can cause system’s de-
graded but still working state [14]. Such systems are 
called multi state systems and they can function with var-
ious levels of effi ciency, commonly called performance 
levels. Hence, systems with binary states can be consid-
ered the special cases of multi state systems. 
According to Yingkui and Jing [15], multi-state compo-
nent criticality and importance analysis is one of the 
most promising research direction in the fi eld of multi 

state systems. Although the analysis of multi state sys-
tems was introduced since the seventies [01], the inter-
est for importance measures of such system started at 
the end of the 20th century [16]. Levitin G, Lisnianski A 
[07] applied traditional importance measures for a sys-
tem with two performance levels and multi-state compo-
nents. Ramirez-Marquez et al [12] analysed two types of 
multi state components criticality: the impact of a compo-
nent as a whole on system reliability and the impact of 
a particular component state on system reliability. Later, 
Ramirez-Marquez and Coit [11] proposed composite im-
portance measure for multi state systems that includes 
costs constraint in components criticality determination. 
Zaitseva [16] and Kvassay, Zaitseva, and Levashenko 
[06] used logical differential calculus for importance anal-
ysis of multi-state systems.
In this paper, we investigate the problem of determin-
ing the most critical multi state components in multi state 
systems. The main idea is to reduce multi state to binary 
problem. This idea was already used by Levitin, Podofi l-
lini, and Zio [08]. They introduced a performance thresh-
old for the system state and divided system’s states in 
two disjoint subsets consisting of the states above and 
below the threshold level. Consequently, they re-intro-
duced binary logic into problem of determining compo-
nents’ importance in the multi state systems. 
In addition, we propose an approach for simultaneous 
determination of a group of the most critical components. 
The approach is based on solving an optimization prob-
lem that is based on the well-known set covering prob-
lem [03]. The remainder of the paper is organized as fol-
lows: Next section is devoted to multi state components 
and systems and calculation of given state probabilities 
for series and parallel systems. New approach for de-
termining the set of the most critical multi state system 
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components is introduced afterwards. Numerical results 
and discussion are presented in the last section.

MULTI STATE SYSTEMS

Suppose that system have n components and that 
each of its components can be in one of the m states 

, where state 0 corresponds to the 
complete component’s failure and the state m-1 corre-
sponds to the perfect functionality. In order to introduce 
the multi states system and its probabilities, we use the 
following notation.
    - set of components, 
    - set of states of the component i,
    - set of system states,

    - probability associated with j-th state
   of the i-th component, ,

    - probability that the i-th component is
   in the state j, ,

    - probability that the i-th 
   component is in the state j or higher, ,

  - probability that the i-th
   component is in the state j or lower, ,

     - probability that the system is in the
   state j, ,
    - probability that the system is in the
   state j, or higher, ,

 - probability that the system is in the
   state j, or lower, ,
The fi rst problem in reliability analysis of multi 
state system is to determine the structure function 

.Then, probab-
nility for each possible state of the system should be 
determined on the basis of state probabnilities for each 
component. 
The set of components’ states is fi nite. Therefore:
      

Since the higher component’s state number correspond 
to the higher component’s performance level, it holds 
that:

 

1)

2)

3)

4)

Analogously, the higher system’s state number corre-
spond to the higher system’s performance level, and:

HOMOGENOUS SYSTEM

The consideration in this paper is restricted on homog-
enous systems, i.e. on systems in which the number 
of states for each component and for the system is the 
same . 
Further on, the treshold concept is used for reliability cal-
culation. 

Treshold concept 

The state r is called the component’s threshold state if 
the component is considered in the failure when it is in 
the state lower than r. In other words, a component is 
operational if it is in the state r or higher.
The state r is called the system’s threshold state if the 
system is in the failure when it is in the state lower 
than r. This means that the system is operational if it is in 
the state r or higher.
Using the threshold approach, appropriate defi nitions of 
system structure and reliability functions may be intro-
duced and some kind of binary logic applied.

Series system

A series system is in failure state if any of its components 
is in failure. It is as weak as its weakest component. In 
other words, the system is operational if all its compo-
nents are operational. 
Series system is in the state j if no one of its components 
is in the state lower than j and at least one is in the state j:

 

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)
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The probability that the system is in state j or higher is:
    

                                                  

Based on (8), (10) and (12), it holds that .

Proof:  

Based on (12):   

and based on (10):  

Finally, according to (8):  .

Parallel system

A parallel system is operational if any of its components 
is operational. In other words, the system is in failure if all 
its components are in failure. 
Parallel system is in the state j if no one of its compo-
nents is in the state lower than j and at least one is in the 
state j:

 
 

The probability that the system is in state j or higher is:
   

This condition can also be expressed as:
    

Based on (9), (11) and (13), it holds that . 

Proof:  

Based on (13):  

and based on (11): 

16)

and

15)

and

and 17)

Finally, according to (9): .

Coherent system

Defi nitions of minimal cut set and minimal path set are 
used in analysing coherent systems of general confi g-
uration. For binary state systems the defi nitions are fol-
lowing. 
Cut set of a binary system is a set of components whose 
failures cause the system failure. 
Minimal cut set (MCS) is a cut set reduced to the mini-
mum number of components whose failures cause the 
system failure. 
MCS can be expressed as a parallel system of its com-
ponents, i.e. if any of the components is operational then 
the set is no longer cut set. 
A coherent system can be expressed as a serial system 
of its MCSs, i.e. that the system failes if at least one of 
its MCSs occurs.
Using the concept of treshold state, the following similar 
defi nitions are used.
MCS in a multi state system may be in one of the m pos-
sible states  .
MCS is in the state j or lower if all its components are in 
the state j or lawer. 
The system is in the state j or higher if all of its MCSs are 
in the state j or higher.

PROBLEM STATEMENT AND MATHEMATICAL 
FORMULATION

It is supposed that the system threshold r and MCSs of 
the sistem are given and the task is to fi nd the set of the 
most critical components. 
Let C be a set of p MCSs of a given multi state system, 

. The state sl  of the l-th MCS is [10]: 

while the state of the system is:

Recall that the system is in failure if at least one of its 
MCSs is in state lawer than r, i.e. the system is opera-
tional if all its MCSs are in state r or higher. Further on, 
a MCS is in state r or higher if at least one of its compo-
nents is in the state r or higher. The problem is to fi nd 
minimal set of components whose states r or higher en-
able that the system is in state r or higher. Components 
in that set are the the most critical multi-state compo-
nents in the multi-state system.
Suppose that all the system’s components are in states 
which are lower than treshold r. According to the equa-
tion (18), if some of the components  increases its 
performances and achieves the state r the correspond-
ing  MCS Cl  will be in state r and is no more cut set. 

18)

19)
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Therefore, such MCS will be eliminated as a cause of 
the system failure. Moreover, all MCSs  contain-
ing the component i will be in the state r  and eliminated 
for the same reason. If all MCSs  are in the state 
r or higher, the system will be operational, i.e. in state r 
or higher.
The problem is to fi nd K components whose achieving 
the state r or higher maximizes the total number of elim-
inated MCSs. A particular form of the defi ned problem 
can be formulated as follows: fi nd the minimal K such 
that all MCSs are eliminated.
Let  be the binary variable equal to 1 when the compo-
nent i is in the state r, and 0 otherwise, . 
The problem of fi nding the minimal number of compo-
nents whose state r will cause elimination of all MCSs is 
the folowing optimization problem: 
   

Objective function represents the total number of com-
ponents which have to be in state r in order the system 
be operational. The constrainta (21) are related to the 
requirement that all MCSs must be eliminated, i.e. that 
each MCS must contain at least one component in the 
state r. 
Note: The above formulated problem is equivalent to the 
problem of determining the shortest minimal path set 
(MPS).

NUMERICAL EXAMPLE

The proposed approach will be illustrated on the multi 
state system represented in Figure 1. 

20)

21)

22)

Figure 1: Fault tree of the system

The root node T corresponds to the top event and rep-
resents the system failure. The leaves x1-x8 are basic 
events. It is supposed that the system and its compo-
nents may have three states: 
0 - failure state, 
1 - degraded but still working state, and 
2 - perfect functionality state, respectively. 
Let the system and all eight components have three 
states: 0, 1 and 2, that represent failure, degraded but 
still working state and perfect functionality, respectively. 
Structure function is given as a disjunctive normal form 
where each conjunction represents one MCS [04,09]. 
For the fault tree in Figure 1, MCSs are: C1={x8}, C2={x5, 
x7}, C3={x6, x7}, C4={x3, x4, x5}, C5={x1, x2, x7}, C6={x3, x4, 
x6} and C7={x1, x2, x3, x4}.
Using the equation (19) and the set MCSs, the system 
state is: 

Assuming that the probabilties of all basic events are 
equal, Birnbaum importance measure [02] and Fussell–
Vesely importance measure [13] give the same compo-
nents ranking: x8, x7, x5, x6, x3, x4, x1 and x2, i.e. x8 is the 
most important and x2 the least important component.
According to the optimal solution of the mathemati-
cal model (20-22), there are two sets containing three 
components: x8, x7 and x3, or x8, x7 and x4 . These sets 
are considered as the minimal set of the most important 
components. 

However, if the states of the three fi rst ranked compo-
nents obtained by Birnbaum and Fussell–Vesely impor-
tance measures (x8, x7 and x5) is increased to 1, the state 
of the system is:

This is the consequence of the fact that traditional im-
portance measures do not take suffi ciently into account 
the interdependence of components and are not able to 
simultaneously isolate the most important group of com-
ponents.

CONCLUDING REMARKS

The problem of determining the set of the most critical 
components of the multi state system with multi state 
components was considered. This set is defi ned as the 
set of components whose operational states imply that 
all MCSs are no more cut sets. In other words, there ex-
ist no one MCS so that all its components are different 
from components from the set of the most critical com-
ponents. At least one component from any MCS must be 
in the set of the most critical components. 
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Finding the set of most critical components was for-
mulated as a well-known set covering problem. It was 
solved using available software for integer linear pro-
gramming problems. It is interesting to point out that 
obtained solution on an illustrative example differs from 
the ones obtained by the Birnbaum and Fussell-Vesely 
importance measures. It was not unexpected because 
Birnbaum and Fussell-Vesely importance measures are 
determined considering each component individually. 
The proposed approach takes into account the group in-
fl uence an consequently the group importance measure. 
Further research should  include different probabilities 
of performance levels that correspond to the system’s 
and components’ states as well as the costs of achieving 
given states.
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