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Diponegoro University, Tembalang, Indonesia

Many variables affect the performance and fuel consumption of internal combustion engines. The most influential 
main variables include air, fuel, ignition, and compression. Spark plugs that play role in the ignition of fire have limita-
tions in the propagation of fire due to their position because of the dual ignition technology. This study aimed to de-
velop engine maps for dual ignition internal combustion engine using the Artificial Neural Network to predict the fuel 
consumption, generated torque, and find out the right combination of fire ignition on dual ignition systems to improve 
performance and reduce fuel consumption. The research was conducted with the initial step of retrieving the data 
engine map by using an engine scanner to find out the data on the current ECU. Then the data is modified to create 
a new engine map (modified engine mapping) that combines ignition timing 2 with a range of 0.5o - 2o. The test re-
sults show different torque and fuel consumption values in four modified engine maps. The optimum engine mapping 
is obtained on engine map 3 with an error value (Mean Square Error) of 0.002 and a regression value (R2) of 0.99. 
Modification map engine 3 with a combination of ignition timing 2 of 1.5o on ignition timing 1 shows the highest torque 
result with an increase in torque of 14.1% and a decrease in fuel consumption of 17.5%.

Key words: neural network, torque, fuel consumption, engine mapping

*munadi@ft.undip.ac.id 195

INTRODUCTION

The internal combustion engine produces mechanical 
energy through the combustion process of a mixture of 
air and fuel with maximum volumetric efficiency. When 
the combustion process increases, engine performance 
also increases (torque, power, and fuel consumption). If 
too much fuel enters the combustion chamber, the per-
formance will decrease and the engine operating costs 
will increase [1]. In the combustion process, the fuel that 
cannot be burned often occurs, due to limitations in igni-
tion timing in carrying out its duties, such as the position 
of the spark plugs and the spark burn time. The position 
of the spark plug must be adjusted to the construction of 
the engine cylinder head and camshaft. While the spark 
burn time is the length of time the spark plug electrodes 
are ignited, which is very small, which is in milliseconds. 
Besides, with a little ECU remap, the duration of the spark 
plug/ignition timing can be adjusted so that the fuel can 
burn completely [2]. This has also been investigated by 
Khair, and Ishak [3]. Besides, several researchers also 
reviewed the moment of ignition [4], the basic adaptation 
of the ignition angle, and autoignition [5].
Many variables affect the performance and fuel con-
sumption of an internal combustion engine. The main 
variables to consider are air, fuel, ignition, and com-
pression ratio. One of the requirements of an efficient 
engine is to have the correct heat stock value and be 
dispensed at the right time, this can be maximized from 
the spark plug ignition system. The ignition system gen-
erates a high voltage and is distributed to the spark plug 
at the right time to carry out combustion in the combus-
tion chamber [3]. Therefore, dual ignition technology was 

created which is applied to internal combustion engines 
to maximize fuel combustion.
Dual ignition is one of the important design parameters in 
spark ignition type engines. The main advantage of using 
dual ignition is getting better and faster fuel combustion 
so that the engine can operate with a poorer fuel mixture 
(lean) [6]. The use of dual spark ignition results in better 
engine performance when compared to conventional en-
gines with single spark ignition which can increase en-
gine efficiency [7]. At the ignition of the spark plug, there 
is a dwell time before the spark plug generates an elec-
tric voltage. This can be minimized by starting the spark 
plugs sequentially.
A method that is very appropriate for these conditions 
is the black box modeling technique or artificial neural 
network modeling which is widely used in engineering 
[8]. Artificial Neural Networks can be used in machine 
performance optimization by providing input and output 
value parameters for learning. This can be obtained by 
changing the ignition time, based on the ANN prediction. 
So, with good control of the ignition time, good combus-
tion effectiveness will be obtained so that it indirectly 
reduces fuel consumption and emission levels [9]. Neu-
ral network has been used for modeling, performance 
prediction, and control of internal combustion engines. 
Neural network had been studied as a control method to 
achieve low emissions and fuel consumption in an inter-
nal combustion engine [10], control the spark timing to 
obtain better performance [11]. The neural network was 
used for model identification of the behavior of the inter-
nal combustion engine [12,13]. Researchers have stud-
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ied for implementing a neural network for predicting the 
performance [14-17], and emission prediction for internal 
combustion engines [18]. The results showed a high ac-
curacy of performance and emission prediction.
In this study, a machine learning technique is employed 
as optimum engine mapping for ignition timing, injection 
timing, generated torque, and low fuel consumption. Two 
electronic control units (ECUs) i.e standard ECU and 
programmable ECU are utilized as a control map for a 
dual spark internal combustion engine. The standard 
ECU is mapped using neural network sourcing from the 
database obtained from the engine test. After obtaining 
the neural network, the model is used for programmable 
ECU to modify the resulted engine map. Various engine 
tests are conducted to verify the engine maps generated 
form neural network regression.

MATERIALS AND METHODS

Hardware and software system

This research implemented the standard engine control 
unit (ECU) manufactured by Yamaha. It has a 24-pin 
connector that connects the ECU to the sensors on the 
engine and the ECU and the actuator to operate the en-
gine under the existing program embedded in the ECU. 
Meanwhile, the employed programmable ECU is ob-
tained from microquirsts as shown in Figure 1. This ECU 
is used to improve engine performance and adjust the 
ignition timing of the two spark plugs. In this stage, man-
ufacturing is carried out to modify the engine mapping 
by referring to the design that has been performed in 
the previous research. Programmable ECU for modified 
engine mapping which has new spark plug holes at an 
angle of 18° to the horizontal axis. The detail of the new 
spark plug angle and placement for the modified engine 
mapping is shown in Figure 2.

(a) (b)

Figure 1: Utilized ECU (a) Standard ECU (b) 
Modification of engine mapping

Figure 2: The placement of a modified spark plug angle

Research method

The flowchart of this research method is described in Fig-
ure 3. The method used is divided into 2 parts, namely 
hardware and software development. In the hardware de-
velopment section, a second spark plug hole was made 
and a new wiring assembly was carried out on the pro-
grammable ECU, while the software was carried out with 
initial data acquisition for the artificial neural network (ANN) 
input database in learning to predict the resulting torque, 
fuel consumption, and air-fuel ratio (AFR) in the range of 
changing ignition time 2 from 0° to 2° to ignition time 1.

Start
Development of 
hardware and 

software

Hardware
• Making a new

spark plug hole
• Making wiring a 

programmable 
ECU

Software

• Preliminary data acquisition
of a standard ECU

• Development of neural
network regression for engine 
mapping

• Performance prediction

Modification of 
engine mapping 
(Modified engine 
mapping 1,2,3,4) 
using programmable 
ECU

Engine mapping testPerformance analysis Finish

Figure 3: Proposed research flowchart for engine 
mapping

In the process of developing an engine map using ANN, 
some procedures must be done so that the engine map 
produced matches the predicted experimental results. 
In determining the input variable that provides a correla-
tion to the output variable, the selection of several input 
quantities must represent the number and target value to 
be achieved. In the engine with the fuel injection system 
used, 5 inputs are selected, namely engine speed (rpm), 
throttle position, air to fuel ratio, ignition time 1, ignition 
timing 2, and injection time. Input variables that will cor-
relate 3 outputs are fuel consumption, air to fuel ratio, 
and torque as shown in Figure 4.
Neural network regression is employed as an engine 
mapping. Levenberg-Marquardt was chosen as a train-
ing function in engine mapping development. The train-
ing process in ANN will be perfect if the network and tar-
get output will be the same. The dashed line on each plot 
is the perfect result, where the output is the same as the 
target. The line representing the best linear regression 
line between output and target is R. If R indicates a val-
ue of 1 or close to 1 (R=1) then there is an exact linear 
relationship between output and target. If R approaches 
0, then there is no linear relationship between the output 
and the target.

Figure 4: Proposed engine map
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RESULTS

Standard ECU

To get the best predictions from ANN, several networks 
were evaluated and trained using experimental data. The 
performance of the mean squared error (MSE) is chosen 
to be the criterion for the error value, if the value is close 
to 1, the correlation between input and output with the 
algorithm model and the selected activation function is 
appropriate and appropriate. A fairly complex network 
model will quickly recognize the right new pattern while 
a simple network model will have low performance and 
many wrong patterns. However, complex models require 
complex non-linear algorithms. Nonlinear equations and 
experimental data are needed to obtain error and regres-
sion results from ANN learning for topological determi-
nation. Table 1 shows the number of hidden layers from 
Figure 5 which shows the ANN topology. The networks 
were varied using a constant number of neurons of 5 
neurons. Furthermore, this ANN model is simulated in 
MATLAB which is modeled in Figure 6. Hyperbolic tan-
gent sigmoid is utilized as the activation function in the 
hidden layer and the linear transfer function is employed 
in the output layer.

Num. of 
hidden 
layers

Training 
Error 
(MSE)

R

Train Val. Test R2

1 115.542 0.189 0.169 0.184 0.189
2 0.955 0.996 0.992 0.992 0.993
3 2.596 0.993 0.977 0.982 0.989
4 138.683 0.004 0.089 0.196 0.015
5 128.370 0.369 0.593 0.153 0.365

Table 1: Variation in the number of hidden layers

Engine 
speed 
(RPM)

Throttle 
Position 
(TPS)

Ignition 
Timing 1 

(IT1)

Injection 
Timing (IJ)

Air-Fuel 
Ratio (AF)

Torque (T)

Input Layer Hidden 
Layer

Output 
Layer

Fuel 
Consumption 

(FC)

Ignition 
Timing 2 

(IT2)

Figure 5: Employed neural network architecture for 
engine mapping

The number of hidden layers with the best training er-
ror and regression (R) results is shown in Table 1. The 
number of hidden layers also significantly affects the re-
gression results, so the network with a hidden layer of 2 
was chosen because it shows a regression value close 

to 1 and a small Mean Squared Error value. said the pat-
tern is trained exactly according to the target). While the 
variation of neurons in the hidden layer can be seen in 
Table 2.

Figure 6: Developed neural network regression blocks

Num. 
of 

Hidden 
Layer

Num. 
of neu-

ron 

Train 
Error 
(MSE)

R

Train Val. Test R2

2 5 202.505 0.205 0.101 0.558 0.216
2 10 0.898 0.998 0.989 0.992 0.995
2 50 4.936 0.999 0.935 0.723 0.956
2 100 131.592 0.078 0.027 0.217 0.082
2 200 91.682 0.150 0.435 0.321 0.211

Table 2: Variation results in the number of neurons

Based on testing on experimental data, the best ANN to-
pology is obtained with 2 hidden layers and 10 neurons. 
In this ANN topology, training is carried out on the stan-
dard map engine and the regression value is obtained 
in Figure 7 with a regression value close to 1 (0.99997).

Figure 7: Selected neural network regression result of 
engine map for standard ECU

Istraživanja i projektovanja za priverdu ISSN 1451-4117
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The success of the training process can be seen from the 
validation performance plot in the form of an error value. 
The error value chosen is the mean square error (MSE) 
where the best performance is 0.21795 at epoch 13. If 
the error value is smaller the output results obtained from 
the training results will be more accurate. The regression 
value of the error is the correlation between the target 
and output values after passing the training process. The 
best regression is if the output and target correlation re-
sults are 1 or close to 1 where the training results show 
that the training value is R=0.99942, R=0.9991 for vali-
dation, and R=0.99872 for the test as shown in Figure 8.

Figure 8: Resulted in MSE during training for standard 
ECU

Modified engine map using programmable ECU

In engine map using is developed by determining the 
input and output variables in the programmable ECU. 
The input variables include engine speed (RPM), throt-
tle position (TPS), air-fuel ratio (AF), fuel consumption 
(FC), and torque (T). Meanwhile, the output variables 
used are ignition timing 1 (IT1), ignition timing 2 (IT2), 
and injection timing (IJ). The neural network developed 
for the modified engine mapping uses the same archi-
tecture as the mapping engine in the ECU standard as 
presented in section 3.1. In Figure 9, the selected error 
value is the mean square error (MSE) where the best 
performance is 0.21795 at epoch 13. If the error value 
is smaller, the training results will be more accurate. The 
regression result shown in Figure 10 is the correlation 
between target and output values. The best regression 
is if the output and target correlation results are 1 or 
close to 1 where the training results show that the train-
ing value is R=0.99942, validation R=0.9991 and the test 
R=0.99872.

Figure 9: Resulted MSE during training for the 
programmable ECU

DISCUSSION

Resulted engine map for ignition and injection 
timing

An engine with fuel injection technology can be con-
trolled by an electronic device called an Electronic Con-
trol Unit (ECU). ECU is data in the form of a map or 
map that presents engine performance based on engine 
conditions, needs, and load. An engine map on the ECU 
generally contains the ignition timing and injection tim-
ing. In testing using an ECU containing a standard map, 
it is carried out on a dynamometer chassis with an inertia 
roller type. The roller ratio on this dyno engine can be 
changed to simulate loading on the engine.

Figure 10: Mapping result on programmable ECU
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Figure 11 (a) shows that the higher the engine speed, 
the greater the ignition timing value. In other words, 
the ignition of the spark plugs will be done earlier, this 
is conducted to anticipate the occurrence of premature 
combustion and compensate for the long ignition time 
from the high engine speed. Meanwhile, the greater the 
throttle position, the smaller the ignition timing value. In 
standard map ignition timing, the ignition timing value 2 
(IT2) is the same as the ignition timing value 1 (IT1), so it 
can be said that the spark plug ignition occurs simultane-
ously. In the standard ECU injection timing map shown 
in Figure 11 (b) it can be stated that the length of time/
pulse-width of the injector to spray fuel will increase as 
the throttle position value increases. This happens when 
the throttle position angle is opened, the volume of the 
incoming airflow increases so that it requires more fuel 
to burn in the combustion chamber which is close to the 
AFR stochiometric value.

(a)

(b)
Figure 11: Ignition and injection timing; (a) Ignition 

timing map; (b) Injection timing map

The training results from the engine map can be seen in 
Table 3 which shows an increase in the maximum torque 
of each engine training map on the programmable ECU. 
Map modification is done by advancing the ignition tim-
ing 2 of the dual ignition system by 0o-0.5o before the 
ignition timing 1/main spark plug turns on in the accel-
eration area, both during low to high engine loading and 
when receiving high loads at low engine speed. This is 

done so that the search for the ignition timing is not too 
broad. The 3-dimensional illustration of ignition timing 2 
from engine map modification 1 is shown in Figure 12.
Based on data from ignition timing 2 on engine map 
modification 1, it is obtained ignition timing 2 engine map 
modification 2 which is illustrated in Figure 12 (a). In 
modified engine map 2, ignition timing 2 advances with a 
range of 0o-1o from the ignition degree of the main spark 
plug, ANN training produces a smoother 3D contour of 
ignition timing 2, besides that there is a correction of the 
value at low throttle at high engine speed, this is This can 
result in lower injection timing as shown in Figure 12 (b).
The ignition timing 2 engine map modification 3 is ob-
tained from the modified engine map training process 
data 2. The reduction of the ignition timing 2 value with a 
value of 0o - 1.5o is expanded to the low engine speed 
area because the expected increase in torque is not in 
accordance with the desired target. So that we obtain 
the ignition timing 2 engine map modification 3 which is 
illustrated in Figure 12 (c). The results of the contours 
of the ignition timing 2 engine map modification 3 have 
similarities to the modified engine map 2. However, there 
is a shift in the value of ignition timing 2 at the 0% - 30% 
throttle opening with engine speed between 4,000 RPM–
6,000 RPM which has a lower value than modified en-
gine map 2. The results show the gradient of the ignition 
timing value 2 on the modified engine map 3 is not too 
steep and tends to be stable at every displacement of 
the throttle opening position. In engine map modification 
4, modification of ignition timing 2 is done with a range 
of 0°-2°. The 3D plot of the modified engine map table 4 
is shown in Figure 12 (d). The resulting contours on the 
modified engine map 4 have unevenness at 50%-100% 
throttle opening at 2,000 RPM to 8,000 RPM.
Another parameter that can affect the performance and 
fuel consumption of an engine is the injection timing. On 
the modified engine map 1, the injection map value is ob-
tained as the output of the ANN training results. The 3-di-
mensional injection map illustration is shown in Figure 
13 (a), the surface contour of modified injection timing 
map 1 looks different from the standard injection timing 
map because it has gone through ANN training. When 
the injection timing has a greater value, what happens 
is that the injector experiences a longer opening of the 
solenoid valve, this is what determines the high or low 
fuel consumption.
The training for injection timing modification 2 is shown 
in Figure 13 (b). The contours of the injection timing 
map on the modified engine map 2 are smoother than 
the modified engine map 1. This can happen because of 
the repeated training process carried out on the modified 
engine map 2. The effect of the smoother contour map 
is that the engine does not experience changes in con-
ditions automatically. suddenly, so that both power and 
torque can be maintained properly and fuel consumption 
can be decreased.
Injection timing on engine map modification 3 is shown 
in Figure 13 (c). The injection timing contour on the mod-

Istraživanja i projektovanja za priverdu ISSN 1451-4117
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(a)

(b)

(c)

(d)

Figure 12: Ignition timing 2 map (a) Modification 1; (b) 
Modification 2; (c) Modification 3; (d) Modification 4

(a)

(b)

(c)

(d)
Figure 13: Injection timing map; (a) Modification 1; (b) 
Modification 2; (c) Modification 3; (d) Modification 4
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ified engine map 3 is not smooth when compared to the 
modified engine map 2, this can be seen in the position 
of the throttle opening 0°-60° at an engine speed of 
1,500 RPM–3,000 RPM which value is unstable. Injec-
tion modified engine timing map 4 is shown in Figure 13 
(d). The resulting contour is not smooth, this is due to 
the greater value range of ignition timing 2 and the result 
of modified ignition timing map 4 which is also coarse, 
therefore it affects the injection timing value on modified 
engine map 4.
Based on the value generated from the ignition timing 
2 and injection timing generated from the training on 
the engine map, the maximum torque value from each 
engine map modification can be obtained. The highest 
increase in torque from the standard engine map owned 
by engine map modification 3 can be seen in Table 3.

Engine map Maximum 
torque (Nm)

Increased 
torque (Nm)

Standard ECU 8.92 -
Modification 1 9.55 0.58
Modification 2 10.11 1.14
Modification 3 10.18 1.21
Modification 4 9.06 0.09

Table 3: Resulted in engine map training results for 
standard ECU and programmable ECU

Generated torque

The torque test is carried out using a dyno test with the 
wide-open throttle method on the internal combustion 
engine. The highest maximum torque value is obtained 
at modified engine map 3, with a value of 10.18 Nm at 
an engine speed of 5,561 RPM as shown in Figure 14.

Figure 14: Generated torque obtained from the engine 
test

The torque on the standard engine map is obtained by 
simulating the results of the neural network training by 
applying a load to the engine. So that the torque value 
at each throttle opening point is obtained in the entire 
engine speed range. The values of torque points on the 
standard engine map are shown in Figure 15. Based on 

the results in the Figure, it can be seen that based on 
training from ANN, the peak torque of the standard map 
engine is at 50% throttle opening at an engine speed of 
6,500 RPM with a value of 8.97 Nm. Meanwhile, based 
on standard specifications, the torque it has is 8.92 Nm 
at an engine speed of 6,850 RPM. When viewed from 
the contour you have, at a certain point the torque will 
decrease, especially after reaching its maximum point. 
This can happen because the energy produced is wast-
ed after reaching the highest engine speed through fric-
tion and other mechanical factors.

Figure 15: Generated torque by standard ECU
The maximum torque value on the modified engine map 
1 is 9.54 Nm at an engine speed of 5,250 RPM as shown 
in Figure 16 (a). Whereas in the torque test on the dyno 
test engine, the maximum torque is obtained with a value 
of 9.55 Nm at an engine speed of 5,240 RPM. Based on 
the results of ANN training, the maximum torque value 
on the modified engine map 2 is 10.06 Nm at an engine 
speed of 6,250 RPM as shown in Figure 16 (b). Whereas 
in the torque test on the dyno test engine, the maximum 
torque is obtained with a value of 10.11 Nm at an engine 
speed of 5,250 RPM. There is a difference in the value 
between the ANN training and the dyno test, this can be 
caused when the input and target data are collected at 
the beginning of starting ANN training. Inaccuracy in the 
initial data collection used as a parameter can affect the 
results of ANN training, although the error value generat-
ed from the training is relatively small.
The maximum torque value from ANN training results on 
the modified engine map 3 is 10.18 Nm at 5,750 RPM 
engine rotation speed, while the dyno test results ob-
tained the maximum torque is 10.18 Nm at 5,561 RPM 
engine rotation speed as shown in Figure 16 (c). In the 
graph of the torque map generated by engine map mod-
ification 3, the high torque value is obtained evenly in 
the cruising map area based on the map table defined 
by Turnbull [19]. In addition, the contours generated by 
the torque map on the engine map are smoother when 
compared to the modified engine torque map 1, 2, and 
4, so it can be concluded that the combustion process 
that occurs for this map is good when viewed from the 
torque value at various rotations. machine. A significant 
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and uniform increase in torque occurs at 30% - 90% in 
the engine speed range of 4,500 RPM – 7,000 RPM. 
Based on the dyno test on engine map modification 4, 
the maximum torque is 9.06 Nm at 5,556 RPM engine ro-
tation speed, while on the torque map produced by ANN, 
the maximum torque is obtained at a value of 9.06 Nm at 
the engine rotation speed of 5,500 RPM to 6,000 RPM 
as shown in figure 16 (d). The contours of the torque 
map that is owned by the modified engine map 4 are 
not smooth on the engine speed of 2,000 RPM to 4,500 
RPM which is evenly distributed at the throttle opening of 
30% to 90%, from the contours of the torque map it can 
be concluded that the engine acceleration is not as fast 
as the modified engine map 3.

(a)

(b)

(c)

(d)

Figure 16: Resulted engine map for generated torque; 
(a) Modification 1; (b) Modification 2; (c) Modification 3; 

(d) Modification 4

Fuel consumption

The fuel consumption rate test is carried out based on 
the wide-open throttle method by providing load on the 
wheels and the engine speed range from 1,500 RPM to 
9,000 RPM. The fuel consumption comparison value is 
shown in Figure 17. Based on the results of the fuel con-
sumption test, the lowest fuel consumption rate is ob-
tained by the modified engine map 2.
The results of fuel consumption on a standard engine 
map using a neural network at various conditions of throt-
tle opening and engine speed are shown in Figure 18. An 
increase in the rate of fuel consumption occurs through-
out the engine speed and throttle position, the greater the 
value of the throttle position and engine speed, the high-
er the rate of fuel consumption. The highest rate of fuel 
consumption occurs at 90% throttle position and at 9,000 
RPM engine speed, which is 40.40 ml/minute. While the 
lowest fuel consumption rate occurs at 5% throttle open-
ing conditions and 1,500 RPM engine rotation speed with 
fuel consumption of 2.83 ml/minute. The engine experi-
ences high engine speed, the combustion chamber will 
require the need for a mixture of fuel and air more.

Figure 17: Actual fuel consumption rate test

Figure 18: Fuel consumption rate on the standard map 
engine
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Figure 19 (c) shows the value of the highest fuel con-
sumption rate that occurs at 95% throttle opening condi-
tions at 9,000 RPM engine speed with a value of 33.91 
ml/minute. The lowest fuel consumption rate occurred at 
the 5% throttle opening point and the engine speed of 
1,500 RPM with a value of 2.4 ml/minute. The contour of 
the fuel consumption rate map resulting from ANN train-
ing has a smooth surface, indicating that the point shift is 
in conditions of throttle opening and engine speed with-
out the occurrence of large gradients. When compared 
with the results of the fuel consumption rate with modi-
fied engine map 2, modified engine map 3 has a higher 
fuel consumption rate than modified engine map 2, but 
the torque value of modified engine map 3 has a high-
er peak torque. higher. From the ANN training results, 
it was found that the highest fuel consumption rate in 
modification 4 occurred at 95% conditions and the en-
gine speed was 9,000 RPM with a value of 34.7 ml/min-
ute. Meanwhile, the lowest fuel consumption rate point 
based on the ANN training results lies in the 5% throttle 
opening condition and the engine rotation speed of 1,500 
RPM, which is 2.6 ml/minute. The 3-dimensional contour 
of the resulting fuel consumption rate in Figure 19 (d) is 
not smooth due to modified ignition timing 2 and injec-
tion timing on modified engine map 4 but is still smoother 
when compared to the fuel consumption rate map on the 
standard engine map.
Figure 19 (c) shows the value of the highest fuel con-
sumption rate that occurs at 95% throttle opening condi-
tions at 9,000 RPM engine speed with a value of 33.91 
ml/minute. The lowest fuel consumption rate occurred at 
the 5% throttle opening point and the engine speed of 
1,500 RPM with a value of 2.4 ml/minute. The contour of 
the fuel consumption rate map resulting from ANN train-
ing has a smooth surface, indicating that the point shift is 
in conditions of throttle opening and engine speed with-
out the occurrence of large gradients. When compared 
with the results of the fuel consumption rate with modi-
fied engine map 2, modified engine map 3 has a higher 
fuel consumption rate than modified engine map 2, but 
the torque value of modified engine map 3 has a high-
er peak torque. higher. From the ANN training results, 
it was found that the highest fuel consumption rate in 
modification 4 occurred at 95% conditions and the en-
gine speed was 9,000 RPM with a value of 34.7 ml/min-
ute. Meanwhile, the lowest fuel consumption rate point 
based on the ANN training results lies in the 5% throttle 
opening condition and the engine rotation speed of 1,500 
RPM, which is 2.6 ml/minute. The 3-dimensional contour 
of the resulting fuel consumption rate in Figure 19 (d) is 
not smooth due to modified ignition timing 2 and injec-
tion timing on modified engine map 4 but is still smoother 
when compared to the fuel consumption rate map on the 
standard engine map.
Figure 20 shows the relationship between the fuel con-
sumption rate predicted by ANN and the experimental re-
sults. In the engine speed range of 7,000 RPM to 9,000 
RPM, the experimental test result value is higher than 

(a)

(b)

(c)

Figure 19: Fuel consumption rate: (a) Modification 1; (b) 
Modification 2; (c) Modification 3; (d) Modification 4

(d)
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(a)

(c)

(b)

(d)
Figure 20: The relationship between the fuel consump-

tion at ANN and the experimental results (a)  
Modification 1; (b) Modification 2; (c) Modification 3; (d) 

Modification 4

the predicted ANN value. The maximum regression val-
ue (R2) is 9.9998 which is obtained by the engine map of 
modification 4. The lowest engine map regression value 
is obtained by modification 2. Overall, the engine map 
modification regression value gets closer to 1, the engine 
map prediction results using ANN have an accuracy that 
is close to the experimental test value.

CONCLUSIONS

Engine map modification 3 was selected as the best 
engine map for an increase in torque of 14.1% and a 
decrease in fuel consumption of 17.42% with a fuel con-
sumption value of 64.1 km/liter with the JISHA 899.183 
driving cycle test method. The best fuel consumption is 
obtained in modified engine map 2 with a reduction of 
19.74% in fuel consumption of 65.4 km/ liter based on 
testing with the JISHA 899.183 driving cycle method. 
While the AFR value for the best fuel consumption on 
a dual ignition engine is on the modified engine map 2, 
which is 18.5: 1 in the cruising engine state. Based on 
the test results, the optimal value of the ignition angle for 
the secondary spark plug is -1.5o to the ignition angle of 
the primary spark plug.
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