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This study is focused on a novel approach for calculating structural fuzzy reliability by using the classical reliabil-
ity theory. In order to handle the structural fuzzy reliability problem, the formulae for establishing normal random 
variables equivalent to symmetric triangular fuzzy number are presented. From these equivalent random ones, the 
original problem is converted to the basic structural reliability problems, then the methods of the classical reliability 
theory should be applied to calculate. Moreover, this study proposes two notions in terms of central fuzzy reliability 
and standard deviation of fuzzy reliability as well as a calculation procedure to define them. Lastly, the ultimate fuzzy 
reliability of the proposed method is established and utilized to compare the allowable reliability in the design codes. 
Numerical results are supervised to verify the accuracy of the proposed method.
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INTRODUCTION

In engineering structures, most of the input data, such as 
load characteristics, material properties, boundary con-
ditions, geometric dimensions, load-carrying capacities, 
contain non-deterministic quantities, which are described 
as uncertainty variables. In [1], uncertainties present in a 
structural system can be categorized as either aleato-
ry or epistemic. If the input data are random parame-
ters, the limit state function is a random parameter, is 
expressed as follows
M=R-S (1)
where M is the limit state function; 
R is the resistance function; 
S is the load effect function.
The structural reliability is defined as follows [2, 3]

sP = Prob M>( 0) (2)
Due to using the probability theory, which is the most 
complete theory, assessing structures by the reliabili-
ty index is prescribed in the structural design code [4]. 
When the input data in structural systems are epistemic 
uncertainties, depending on how to describe the uncer-
tainties, the structural reliability can be derived by the dif-
ferent approaches, as using either the fuzzy sets theory 

[5÷12] or the fuzzy random theory [13,14]. In this study, 
we only consider that the epistemic ones are represent-
ed as fuzzy numbers, which are always interested in the 
reality problems. In this case, the structural reliability 
had the different names, such as the safety possibility of 
structures [6], the fuzzy reliability index [7, 8], the fuzzy 
reliability [9, 10, 11]. The terminologies are named the 
fuzzy reliability later.This fuzzy reliability can be classi-
fied into three classes: the resistance function R and the 
load effect S are fuzzy  numbers, the resistance R is a 
random parameter and the load effect S is a fuzzy num-
ber, the resistance R is a fuzzy number and the load ef-
fect S is a random parameter. These approaches [5÷12] 
for the fuzzy reliability are detailed analyzed below.
According to Dong et al. [5], the fuzzy failure is determined 
based on the two α -cuts Mα and Rα (Fig.1a) as follows

( ) ( )FP= T S>R +T S>R1
2
 
 

   (3)

h hFF= , FR= -1
2 2

(4)

In Fig. 1a, the fuzzy failure (FF) and the fuzzy reliability 
(FR) are expressed as follows, respectively

Figure 1: The method [5] 
a. The interference model of the fuzzy resistance number R and the fuzzy load effect number S  

b. The subtraction of the fuzzy resistance number R and the fuzzy load effect number S

~ ~
~ ~
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From formula (4), one realizes that the fuzzy failure is 
the average of the possibility measure and the necessity 
measure of event A (Fig. 1b) according to the possibility 
theory [15]. Hence, the method [6] is an approximation of 
the average, and the transformation from logical expres-
sion (3) to formula (4) is an intuitive formula. Besides, the 
effect of the spread of fuzzy numbers R~ and S~ aren’t 
considered absolutely.
Differed from Dong et al. [5], Sherstha and Duckstein
[6] considered directly M, which is the subtraction of the 
fuzzy resistance number  and the fuzzy load effect num-
ber, and the fuzzy reliability is defined as the ratio of the 
membership function of M which is greater than 0 to the 
total area of the membership funtion of M (Fig. 2)

( )

( )

M
M>

M

μ x dx
FR=

μ x dx
0



(5)

Figure 2: The method [6, 7]

where μM(x) is the membership function of fuzzy number M~

Figure 3: The interference model [10, 11]

The formula (5) is approriate for the geometrical definition 
of probabiliy in [16]. Nevertheless, it should be realized 
that the membership functions in the fuzzy sets theory 
and the density distribution functions in the probability 
theory are not equivalent representations of uncertainty. 
Hence, the fuzzy reliability in the formula (5) is only simil-
iar to the probabilistic reliability in the classical reliability 
theory. Based on the formula (5), Park et al. [7] deter-
mined the fuzzy reliability when the membership funtion 
μM(x) is triangular and trapezoidal. Rezaei et al. [8] ex-
tended formula (5) in case fuzzy variables formed the 
pyramid to asess fuzzy reliability of the wing flutter speed.
In [9], Li et al. proposed a formula for fuzzy reliabili-
ty analysis of mechanical structures when the stress S 
was modeled as a fuzzy number with given member-
ship function μS(x) and the strength R was modeled as 
a random variable with given distribution function fR(x) 
(Fig. 3). The authors idealized that fuzzy reliability in the 
fuzzy stress - random strength interference model was a 
real value, and the Zadeh's notion for the probability of a 

fuzzy event [17] is used to calculate. The fuzzy reliability 
is given as follows

( ) ( )S RFR= -FF= - μ x f x dx∫1 1 (6)

The drawback of this method is that two functions are 
under integral in the formula (6) have different measure-
ments, the area between the curve fR(x) and the abscis-
sa is unit but for the fuzzy number μS(x) isn't. In order 
to overcome this drawback, Jiang and Chen [10] sup-
posed that the α-cuts of a fuzzy number were the linear 
distributions, then computed the conventional probability 
at various α-cuts and the fuzzy reliability was the aver-
age of the reliabilities at the α-cuts. Tang et al. [11] also 
utilized this assumption and computed the fuzzy failure 
probability by applying the Gauss-Legendre quadrature 
formula. However, it should be seen that different distri-
bution assumptions of the α-cuts  lead to totally different 
fuzzy reliability results.
From the above analysis, one realizes that it had diversi-
ty approaches for evaluating the structural fuzzy reliabil-
ity. Nevertheless, the meaning of the existing formulas is 
less evident than the reliability in the classical reliability 
theory. In order to overcome this drawback, using the tra-
ditional reliability analysis theory as a basis for assessing 
fuzzy reliability is a reasonable approach, due to the fact 
that the traditional probabilistic methods remain domi-
nant in the field of measurements [18] and are well es-
tablished in the decision making problems [19]. Hence, 
the aim of this study is to establish a novel approach for 
calculating structural fuzzy reliability by using the classi-
cal reliability theory. Firstly, the transformation from fuzzy 
number to equivalent normal random variables is pre-
sented. As a consequence, a fuzzy reliability problem is 
replaced by the traditional reliability problems, and the 
classical methods could be utilized to solve. Additional-
ly, two notions including the central fuzzy reliability and 
the standard deviation of fuzzy reliability are proposed. 
While the central fuzzy reliability is the mean value of 
fuzzy reliability, the remain notion represents a measure 
of the spread of fuzzy reliability around its own central. 
Lastly, the ultimate fuzzy reliability is constituted based 
on three sigma rule, and is easily compared with the al-
lowable reliability in the structural design codes. Numer-
ical results are thoroughly explored to demonstrate the 
accuracy of the proposed method.

METHODS

The formula for computing the deviation of the 
equivalent normal random variable

The transformation from fuzzy numbers into random 
quantities and conversely should be taken into acount 
in any problem where heterogeneous uncertain and im-
precise data appear together (e.g. information deficit, 
lingustic variables, statistical data). The representative 
transformation principles, such as insufficient reason, 
maximum specify, uncertainty invariance, are proposed 
by Dubois et al. [18, 20], Dubois [21] and Klir [15]. Based 

~

~
~
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on combining the principles of insufficient reason and 
maximum specify, Tuan and Huynh [22] proposed an in-
novation transformation to calculate the deviation of the 
equivalent normal random variable. For the transforma-
tion from standardized symmetric triangular fuzzy num-
ber (Fig. 4) into random quantity, the error of probability 
measure between equivalent probability density function 
p(x) of standardized symmetric triangular fuzzy number 
got by the principle of insufficient reason and normal ran-
dom variable p1(x) is expressed by the following formula

( )( ) ( )P A -P A min→2
1 [ ),x -∀ ∈ 1 0 (7)

where p(x), p1(x), P(A), P1(A) are determined as follows

[ )

( ]

( )
( )

( ) ,

- ln -x  ;x - ,
p x =

 - ln x  ;x

 ∈

 ∈


1 10
2
1 0 1
2

(8a)

( )
x-
σp x = e

πσ

 
  
 

2

22
1

1
2

(8b)

[ ]( ) ( )P A = x-xln -x +1 1
2

(8c)

( )
xx -
σ

-

P A = e dx
πσ

 
  
 ∫

2

22
1

1

1
2

(8d)

Figure 4: Standardized fuzzy variable

Figure 5: Symmetric triangular fuzzy variable

From (7) we get

( ) ( ( ) ( ))
-

F σ = P A -P A dx min→∫
0

2
1 1

1

(9)

Due to the different domain between probability density 
function p(x) and normal random variable p1(x), in order 
that probability of density function p1(x) in (-∞,1) be  in-

significant, one needs

( )( ) ,
x- -
σ

o
-

F σ =P A*:x - - = e dx min
πσ

 
  
 

∞

∈ ∞ →   ∫
2

2
1

2
2 1

11
2

(10)

Combine (9) and (10), we have

( ) ( ) ( ) ( ( ))
x- -
σ

- -

F σ =F σ +F σ = P(A)-P A dx+ e dx min
πσ

 
  
 

∞

→∫ ∫
2

2
0 1

22
1 2 1

1

1
2

(11)

For the reverse transformation from normal random vari-
able into equivalent fuzzy number, the error of possibility 
measure between equivalent fuzzy number of normal 
random variable got by the principle of maximum speci-
ficity and standardized fuzzy number is expressed by the 
following formula

( )( ) ( ) ( )
-

- -

G σ = π x - -x dx+ π x dx min
∞

→∫ ∫
0 1

2 2
1 1

1

1 (12)

where π1(x) is the equivalent fuzzy number of normal 
random variable determined as follows

( ) ( ) ( ) ( )
x σ

- σ -x

π x =π -x = p y dy+ p y dy∫ ∫
6

1 1 1 1
6

In order to solve the multiobjective optimization problem 
(11) and (12), transforms multiple objectives into a scalar 
objective function by multiplying each objective function 
by a weighting factor and summing up all contributors

(13)

( ) ( ) ( ) ( )H s =γF s + -γ G s min→1 (14)
where γ∈[0,1].
For the mathematical meaning, formula (14) is an exten-
sion which modifies the equivalent characteristic accord-
ing to two principles: the principle of insufficient reason 
when going from fuzzy number to random variable,  and 
the principle of maximum specificity when going from ra-
dom variable to fuzzy number. For solving (14), Genetic 
algorithm (GA) [23] is applied using the built-in functions 
in Matlab. The relation between weighting factor γ and 
deviation σ is detailed depicted in Fig. 6.
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Figure 6: Representation of the relation between 
deviation and weighting factor
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One realizes that the proposed transformation encodes 
a family of normal random variables including the result 
of Klir’s method, from the standardized fuzzy number. 
Indeed, the deviation of normal random variable using 
uncertainty invariance principle is of 0.3989 [24], as the 
same as the result attains according to the proposed 
transformation when weighting factor is of 0.728. Hence, 
the constrains generated in the proposed transformation 
are more flexible than Klir’s method.
For a symmetric triangular fuzzy number X=(a,l)LR (Fig. 
6), the relation between it and the standardized fuzzy 
variable x=(0,1)LR is defined as follows [22]

X-ax=
l



 (15)

The central fuzzy reliability, the standard deviation 
of fuzzy reliability

As a result of accomplishing a family of normal random 
variables, the original structural fuzzy reliablity problem 
is converted to the basic reliability problems using the 
classical reliability theory to solve. By this we mean that 
the calculated reliablity will vary from value to value. 
Therefore, the attained fuzzy reliability can be treat as a 
random variable with its own mean, standard deviation.
Based on the relation between the deviation of equiv-
alent nornal random variable and weighting factor ex-
plored in the previous section, three especial values of 
the weighting factor γ are considered:
When γ = 0.5 we get σ = 0.476.   (16.a)
When γ = 1 we get σ = 0.288.   (16.b)
When γ = 0 we get σ = 0.640.   (16.c)
The value σ = 0.476 with γ = 0.5 in formula (16.a) means 
to choice the equilibrium for the weighting factors of ob-
jective function F(σ) and objective function G(σ). Due to 
this reason, the value σ = 0.476 is utilized to calculate the 
central fuzzy reliablity FRc being the mean value of fuzzy 
reliability. Two remain values in formula (16.b) and (16.c) 
are the minimum and the maximum values of the devi-
ation of equivalen normal random variable, respectively. 
Therefore, we will utilize them to calculate the standard 
deviation of fuzzy reliability σFR.
Following that, without loss of generality, one considers 
the limit state function is given by

( ) ( ) ( ...... )F r n rg x =R-S=g x ,x =g x ,x , ,x ,x1 2
   (17)

where xF=(x1,x2,......,xn) are independent fuzzy variables, 
as symmetric triangular fuzzy number xi=(ai,li)LR; xR is 
random parametter of the resistance function or the load 
effect.
In order to determine reliability according to the tradition-
al reliability theory, the transformation from fuzzy variable 
xi=(ai,li)LR to normal random variable xi~N(μi, σi) is accom-
plished based on formulas (15) and (16), it means:
When  γ = 0.5 : μi = ai, σi = 0.476 li    (18.a)
When  γ = 1.0 : μi = ai, σi = 0.288 li    (18.b)

When  γ = 0.0 : μi = ai, σi = 0.640 li    (18.c)
For calculating the central fuzzy reliability FRc, the mean 
and the deviation of the equivalent normal random vari-
able determined by formula (18.a) are applied. Then, 
can utilize any techniques in the classical reliability the-
ory, such as First-order reliability method (FORM), Sec-
ond-order reliability method (SORM), Cornell reliability 
index, Hasofer-Lind reliability index, Monte Carlo meth-
od, so on, to estimate structural reliability.
Due to the fact that a large amount of the means and the 
deviations of the equivalent normal random variables are 
determined by solving the formulae (14) with weighting 
fator γ is fixed, there should be accomplished a large 
number of problems to determine the standard deviation 
σFR of fuzzy reliability. In order to reduce the number of 
computations, the central composite design in the re-
sponse surface method [25] is applied and the standard 
devition of fuzzy reliability is calculated as follows

( )
( )

k

m

s c
k=

FR

FR -FR
σ =

m-

∑
2

1

1
(19)

where FRsk is the reliability value at the kth experimental 
of the central composite design, with its own mean, stan-
dard deviation are defined by formulas (18.b) and (18.c);
FRc is the central fuzzy reliability;
m is the total number of test runs in the central com-
posite design: m = 2n+2n, with n is the number of fuzzy 
variables.

The ultimate fuzzy reliability

In order to take into account the bias of fuzzy reliability, 
the ultimate fuzzy reliability FRu is presented and used to 
compare the allowable reliability in the structural design 
codes. Based on three sigma rule in the probability the-
ory, the ultimate fuzzy reliability is computed as follows

u c FRFR =FR - σ3
When the input data has only one fuzzy variable (n=1), 
the ultimate fuzzy reliability is calculated as follows

( )uFR =min FR ,FR1 2

(20)

(21)
where FR1 = Ps(x1, xR), FR2 = Ps(x2, xR) with x1 and x2 are 
equivalent normal random variables, which have mean 
μi and deviation σi is defined by formulas (18.b) and 
(18.c), respectively.

NUMERICAL EXAMPLES AND DISCUSSIONS

In order to verify the proposed method, the illustrative ex-
amples including mathematical examples and engineer-
ing examples are given. The limit state functions in the 
illustrative examples are explicit functions, in order to get 
to a resemblance to structural analysis methods.

Example 1

Hypothetical limit state function with three variables is 
indicated as follows

~

~

~ ~ ~
~

~
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( ) ( )( ) . . .g x = - x - x -x +x - sin x x2 2 3
1 2 2 3 1 32 0 0 32 1 0 2 (22)

where x1, x2, x3 are assumed to be symmetric triangular 
fuzzy numbers (0,1)LR.
The fuzzy reliability FR of the method [5] is: FRD=0.89053.
The fuzzy reliability FR of the method [6] is: FRS=0.918638.
The relative difference ε between FRD and FRS is:

( )
. .D S

S

FR -FR
ε= =- %

FR
100 3 05293 (23)

The Monte Carlo method [2, 3] with a number of trials 
Ns=106 is used to calculate in the proposed method. 
Tab. 1 displays the results of the central and the ultimate 
fuzzy reliability of the proposed method and the relative 
difference ε of the fuzzy reliability between the proposed 
method and the method [6].

The fuzzy 
reliability 

The fuzzy  
reliability 
FR of the 
proposed 
method

The fuzzy 
reliability 

FRS of the 
method [6]

The relative 
difference ε 
of the fuzzy 

reliability 
FR

FRc 0.989040 0.918638 7.66371
FRu 0.936526 0.918638 1.94726

Table 1: The reliability of the proposed method and the 
method [6]

Example 2

Consider a two-story frame structural system in Fig. 7, 
two girders are infinitely rigid. Elastic modulus E, ceiling 
height H, loads P1 and P2 are assumed to be symmet-
ric triangular fuzzy numbers: E=(2x107, 1.2x105)LR (unit:
kN/m2); H=(3,0,2)LR (unit: m); P1=(20,2)LR (unit: kN). The 
width b and the height h of the column are certain vari-
ables with 0.2 m and 0.3m, respectively.

Figure 7: Two-story frame structural system

Applying the shear forces distribution method, horizontal 
displacement at the top of the structural system is ex-
pressed as follows

( )
t

P +P H
Δ =

EI
2 1

32
24

(24)

where  I = bh3/12 = 4.5x10-4 m4.
Because the prescribed horizontal displacement at the top 

of frame structural is 2H/500, the limit state function in terms 
of horizontal displacement at the top is given as follows

( )
( ) 1P +P HHg x = -

EI
2

32
250 24

(25)

The fuzzy reliability FR of the method [5] is: FRD=0.892432.
The fuzzy reliability FR of the method [6] is: FRS 0.970360.
The relative difference ε between FRS and FRD is:

( )
. .D S

S

FR -FR
ε= =- %

FR
100 8 03085 (26)

The second-order reliability method SORM [27, 28] is 
used to calculate the central and the ultimate fuzzy re-
liability in the proposed method. The derived results are 
compared with the method [6] and represented in Tab. 2.

The fuzzy 
reliability 

FR  

The pro-
posed 

method

The  fuzzy 
reliability 

FRs accord-
ing to the 

method [6]

The relative 
difference ε 
of the fuzzy 

reliability 
FR

FRc 0.994769 0.970360 2.51548
FRu 0.955102 0.970360 -1.57237

Table 2: The results of the proposed method and that of 
the method [6]

Example 3

Determine the fuzzy reliability in terms of plastic collapse 
of the steel beam is shown in Fig. 8. Two cases are con-
sidered as follows:
Case 1: The lenght L, the width b and the height h of the 
steel beam are certain variables with 4m, 4 cm and 8 cm, 
respectively. The concentrated load P (unit: kN) and the 
uniform load q (unit: kN/m) are assummed as symmetric 
triangular fuzzy numbers given as following: P=(10,2)LR, 
q=(8,1)LR. The yield stress is considered as a normal dis-
tribution with the mean value of 24 kN/cm2 and the stan-
dard deviation of 2 kN/cm2.
Case 2: The lenght L (unit:m), the width b and the height h 
of the steel beam (unit: cm), the concentrated load P (unit: 
kN), the uniform load q (unit: kN/m) and the yield stress σy 
(unit: kN/cm2) are assummed as symmetric triangular fuzzy
numbers given as following: L=(4,0.5)LR, b=(4,1)LR, h=(8,1)LR, 
P=(15,3)LR, q=(10,2)LR, σy=(24,2)LR.

A

q P

B

L/2 L/2

C

b

h

Figure 8: The built-in steel beam fixed at both ends

~
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~
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~
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~
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~
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The steel beam is statically indeterminate to the second 
degree, therefore three hinges are required to change 
it from a girder structure to a mechanism, as shown in 
Fig. 9.
Then, the principle of virtual work is applied to determine 
the limit state function in terms of plastic collapse.
Work done by three hinges during collapse
A = Mp.θ + Mp.2θ + Mp.θ= 4Mp.θ   (27)
Work done by the concentrated load P and the uniform 
load q

Mp q PMp Mp Mp

θ θ

Figure 9: Plastic collapse of the steel beam fixed at both 
ends

L LT=qL. .θ+P. .θ
4 2

(28)

Equating (27) and (28): p
qL PLM = +

2

16 8
(29)

where Mp=σy.Wp, with Wp - the plastic moment of resistance. 
Hence, the limit state function in terms of plastic collapse 
is given as follows

( ) y
p p

qL PLg x =σ - -
.W .W

2

16 8
(30)

with the solid rectanglar section: p
bhW =

2

4
Case 1:
 - The fuzzy reliability of the method [9] is: 

FRL=0.840945.
 - The fuzzy reliability FR of the method [10] is: 

FRJ=0.958025.
 - The relative difference ε between FRL and FRJ is:

( )
. .L J

J

FR -FR
ε= =- %

FR
100 12 22093 (31)

Case 2:
 - The fuzzy reliability of the method [5] is: 

FRD=0.693371.
 - The fuzzy reliability FR of the method [6] is: 

FRS=0.792823
 - The relative difference ε between FRD and FRS is:

( )
. .D S

S

FR -FR
ε= =- %

FR
100 12 54398 (32)

Tab. 3 and Tab. 4 display the results of the central and 
the ultimate fuzzy reliability of the proposed method and 
the relative difference ε of the fuzzy reliability between 

the proposed method and the method [10] in Case 1 and 
the method [6] in Case 2. The Cornell reliability index is 
applied in terms of Case 1 and the SORM is applied in 
terms of Case 2 in the proposed method.

The fuzzy 
reliability 

FR  

The pro-
posed 

method

The fuzzy 
reliability 

FRJ accord-
ing to the 

method [10]

The relative 
difference ε 
of the fuzzy 

reliability 
FR

FRc 0.948643 0.958025 -0.97927
FRu 0.9221510 0.958025 -3.74460

Table 3: The results of the proposed method and that of 
the method [10] in Case 1

The fuzzy 
reliability 

FR  

The pro-
posed 

method

The fuzzy 
reliability 

FRS accord-
ing to the 

method [6]

The relative 
difference ε 
of the fuzzy 

reliability 
FR

FRc 0.934335 0.792823 17.84907
FRu 0.794347 0.792823 0.19218

Table 4: The results of the proposed method and that of 
the method [6] in Case 2

Example 4

Determine reliability in terms of stability of the structural 
system is shown in Fig.10. Two cases are considered as 
follows:
Case 1: Inertia moment I = 808cm4, length l = 5m. Elastic 
modulus E is considered as a normal distribution with the 
mean value of 2.1x104 kN/cm2 and the standard devia-
tion of 2.5x103 kN/cm2. Concentrated load P (units:kN) is 
considered as symmetric triangular fuzzy numbers given 
as following: P=(110,10)LR.
Case 2: Inertia moment I = 808cm4. Length l (units: 
m), elastic modulus E (units: kN/cm2) and concentrat-
ed load P (units:kN) are assumed as symmetric trian-
gular fuzzy numbers given as following: l=(5,0.5)LR,
E=(2.1x104,2.5x103)LR, P=(110,10)LR.
In order to calculate in terms of stability, the structural 
system is transformed to the continuous beam of two 
equal spans in Fig. 11. The stiffness k of the intermediate 
elastic support is determined by bellow formula

.( )
l l EI= l+ = k=

k EA EI EI l
⇒

3 3

3
1 1 49 96

48 2 96 49
(33)

According to formula (33), it is evident that the value of 
k<16π2EI/(2l)3 corresponds to stability loss in the sym-
metrical mode.
The equation in terms of stability is represented in the 
following form [26]

( )
)  (

k. l
ν =- =

E
η -

I

3

1

2 16
48 49

(34)

~

~
~ ~
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EA=2EI/l2

2EI

P

D HK

l/2l/2 l/2 l/2

2EI

l

Figure 10: The structural system

A B CEI EI P

l l

k

Figure 11: The diagram for calculating stability

Solve the equation (34) obtained ν=1.80475.
The critical load is

.cr
EI EIP =ν =
l l

2
2 21 80475 (35)

The limit state function in terms of stability is given as 
follows

( ) . EIg x = -P
l 21 80475 (36)

Case 1:
 - The fuzzy reliability of the method [9] is: 

FRL=0.812516.
 - The fuzzy reliability FR of the method [10] is: 

FRJ=0.800996.
 - The relative difference ε between FRL and FRJ is:

( )
. .L J

J

FR -FR
ε= = %

FR
100 1 43826 (37)

Case 2:
 - The fuzzy reliability of the method [5] is: 

FRD=0.698673.
 - The fuzzy reliability FR of the method [6] is: 

FRS=0.828759.
 - The relative difference ε between FRD and FRS is:

( )
. .D S

S

FR -FR
ε= =- %

FR
100 15 6964 (38)

Tab. 5 and Tab. 6 display the results of the central and 
the ultimate fuzzy reliability of the proposed method and 
the relative difference ε of the fuzzy reliability between 
the proposed method and the method [10] in Case 1 and 
the method [6] in Case 2. The Cornell reliability index is 
applied in terms of Case 1 and the SORM is applied in 
terms of Case 2 in the proposed method.

The fuzzy 
reliability 

FR  

The pro-
posed 

method

The fuzzy 
reliability 

FRJ accord-
ing to the 

method [10]

The relative 
difference ε 
of the fuzzy 

reliability 
FR

FRc 0.792281 0.800996 -1.08795
FRu 0.783605 0.800996 -2.17113

Table 5: The results of the proposed method and that of 
the method [10] in Case 1

The fuzzy 
reliability 

FR  

The pro-
posed 

method

The fuzzy 
reliability 

FRS accord-
ing to the 

method [6]

The relative 
difference ε 
of the fuzzy 

reliability 
FR

FRc 0.924816 0.828759 11.58050
FRu 0.814419 0.828759 -1.73027

Table 6: The results of the proposed method and that of 
the method [6] in Case 2

Example 5

In order to verify design bearing capacity of the pre-
stressed concrete pile with the cross-sectional area 
(40x40) cm, six testing piles under static axial compres-
sive loads have been proceed. The allowable loads cal-
culated from the test results based on Vietnamese na-
tional standard TCVN 9393:2012 [29] are displayed in 
Tab. 7. The design load Pd is of 1400 kN.
Requires: Determine the safety level in terms of the de-
sign bearing capacity of the pile.

Pile/Test 
No.  

Embedded 
Length L 

(m)

The failure 
load (kN)

The allow-
able load 
Pa (kN)

1 23.2 3600 1800
2 22.8 3600 1800
3 21.5 2700 1350
4 21.2 2700 1350
5 22.3 3150 1575
6 22.5 3150 1575

Mean value 22.25 3150 1575

Table 7: Summary of test pile properties

Based on the data obtained from Tab.7, one realizes that 
all numbers are equally likely to appear. Due to the fact 
that only a small number of observations are available, 
so as to determine safety level in terms of the design 
bearing capacity of the pile based on the classical ap-
porach, the allowable load Pa need to be supposed as a 
uniform distribution within a range [1350, 1800] kN.
As a results, the reliability in terms of the design bearing 
capacity of the pile is given as follows

Istraživanja i projektovanja za privredu ISSN 1451-4117 
Journal of Applied Engineering Science Vol. 19, No. 4, 2021



Tuan-Hung Nguyen, et al. - Structural fuzzy reliability analysis using the classical reliability theory

1081

( )
( )

.s

-
P = - =

-
1400 1350

1 0 888889
1800 1350

(39)

In the proposed method, triangular membership fuction 
can be assigned to the allowable load Pa, with the belief
value of the membership function equals to the mean 
value, and the zero α-cut of fuzzy number is created by 
the extreme values [1350, 1800] kN. Therefore, the al-
lowable load Pa is the symmetric triangular fuzzy num-
ber: Pa=[1575,225]LR (unit: kN).
Then, the limit state function in terms of the design bear-
ing capacity of the pile is given as follows

( ) a dg x =P -P (40)

Tab. 8 displays the results of the central and the ultimate 
fuzzy reliability of the proposed method and the relative 
difference ε of the fuzzy reliability between the proposed 
method and the classical reliability method based on as-
sumption for distribution of uncertain variable.

The fuzzy 
reliability 

FR  

The pro-
posed 

method

The classi-
cal reliability 
method PS 

The relative 
difference ε 
of the fuzzy 

reliability 
FR

FRc 0.948869 0.888889 6.74779
FRu 0.887870 0.888889 -0.11463

Table 8: The results of the proposed method and that of 
the classical reliability method based on assumption for 

distribution of uncertain variable

DISCUSSIONS

Analysis the results of the above examples, the following 
discussions are given:
1. The results of the central and the ultimate fuzzy re-

liability of the proposed method has an only small 
relative difference in comparison with that of fuzzy 
reliability of the method [10]. In the all of the exam-
ples, the central fuzzy reliability FRc of the proposed 
method produces results closed to the results of the 
method [10]. It is found that the fuzzy reliability of the 
method [10] is the average of the reliabilities at the 
α-cuts, which is similar to the notion of the central 
fuzzy reliability of the proposed method. 

2. The results of the ultimate fuzzy reliability of the
proposed method has an only small relative differ-
ence in comparison with that of fuzzy reliability of 
the method [6]. The relative differences have been 
occured due to the different meaning between the 
fuzzy reliability in the method [6] and the reliability in 
the classical reliability theory. 

3. The result of the ultimate fuzzy reliability of the pro-
posed method approximates that of the reliability 
based on the classical approach. In addition, the 
proposed method need’n any assumption for dis-
tribution of uncertainty variables when information 

deficit appears. This pointed out that the proposed 
method is suitable to handle the problems of reality.

CONCLUSIONS

A novel method for calculating structural fuzzy reliabili-
ty is proposed in this study. In order to apply the tradi-
tional reliability theory, a family of normal random vari-
ables equalling symmetric triangular fuzzy number are 
presented and explored in detail. From these equivalent 
random ones, two novel notions of the central fuzzy re-
liability and the ultimate fuzzy reliability are formulated 
and a procedure for calculating them is defined. In order 
to handle the bias of fuzzy reliability, the proposed ulti-
mate reliability need to be compared with the allowable 
reliability in the structural design codes. Numerical re-
sults manifest the equivalence between the ultimate reli-
ability in the proposed method and the “exact” reliability 
in the classical reliability theory.
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