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VIBRATION REDUCTION OF CONTINUOUS MOVING 
LOADS ON A NONLINEAR SIMPLE BEAM RESTING ON AN 

ELASTIC FOUNDATION
Yi-Ren Wang*, Chien-Chun Hung, Hsin Huang
Tamkang University, Department of Aerospace Engineering, New Taipei City, Taiwan 

This technical note investigates a hinged-hinged nonlinear Euler-Bernoulli beam resting on an elastic foundation 
subjects to moving loads. The method of multiple scales (MOMS) is employed to analyze this nonlinear beam model. 
The fixed points plots are made to identify the system’s internal resonance. The frequency ratio plot is proposed to 
predict the system internal resonance conditions. This study improved the author’s earlier work for a wider range of 
prediction on internal resonance conditions. The continuous concentrated moving loads are applied to this nonlinear 
beam model. The dynamic vibration absorber (DVA) is attached on the beam to reduce vibration and prevent internal 
resonance. The mass, spring constant and location of the DVA are studied to obtain the best damping effect on the 
nonlinear beam with moving loads. The results are verified by numerical results and ANSYS simulations.
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INTRODUCTION

The vibrations of mechanical elements have always 
been a concern for researchers and engineers. Mun-
drey [1] demonstrated the examples of beams placing 
on elastic foundations which have been widely applied to 
civil, mechanical, and aerospace engineering. Alam Uz-
zal [2] considered a linear Euler-Bernoulli beam support-
ed by two-parameter Pasternak foundation subjected to 
a single moving load. They investigated the deflection 
and bending moment of the beam for different moving 
load velocities. Sudheesh Kumar [3] gave an analytical 
formula for free response of a simple beam under light-
ly and heavily damped conditions. A single moving load 
was also considered. Effect of damping at resonant and 
cancellation of moving speeds is predicted. To reduce 
the impact of beam vibration, the vibration reduction has 
usually been accomplished by using the tuned mass 
damper (TMD) or the dynamic vibration absorber (DVA). 
Wang and Kuo [4] discussed a hinged-free nonlinear Eu-
ler-Bernoulli beam resting on a nonlinear elastic founda-
tion, and found that placing a dynamic vibration absorber 
(DVA) with appropriate mass could prevent internal res-
onance and suppress vibrations in the beam. Wang and 
Lu [5] reported that, in a system with a hinged-hinged 
nonlinear beam resting on a nonlinear elastic foundation, 
1:3 (internal resonance (I.R.)) occurs within the 1st and 
3rd modes when the ratio of the elastic modulus of the 
foundation to that of the beam is . Due to the complicated 
and limited of the analytical methodology, they just stud-
ied the I.R. for the 1st and 3rd modes. Other modes’ I.R. 
conditions were not considered. Samani and Pellicano 
[6] considered a simple beam with a DVA and sought the 
optimal DVA location for vibration reduction with concen-
trated moving loads. They found that a nonlinear DVA 
has better damping effects than does a linear DVA. How-
ever, an I.R. condition needs to be analyzed in the non-

linear case. Wang et al. [7] found that when the multiple 
of mass and the spring constant (mDk) of the TMD shock 
absorber is a certain value, the best vibration reduction 
effect can be obtained, and this property still exists when 
the location of the TMD (lD) is adjusted. Wang and Wei 
[8] proposed a fluid-convey tube model approximated by 
a nonlinear beam model resting on an elastic foundation. 
The different combinations of the damping ring parame-
ters on the beam were studied. The results showed that 
the instead of TMD’s mass and spring & damping coeffi-
cients, the location of the TMD also played an important 
role in system damping effect. In the present work, the 
authors’ nonlinear beam model [5] is considered. Their 
analytical result for internal resonance conditions is veri-
fied and improved by a simple numerical method. A wider 
range of I.R. conditions are considered. The continuous 
concentrated moving loads model is adopted from [6] 
and added to this nonlinear beam model. The DVA is at-
tached on the beam to reduce vibration and prevent inter-
nal resonance. The mass, spring constant and location 
of the DVA are studied to obtain the best damping effect 
on the nonlinear beam with moving loads. The method 
of multiple scales (MOMS) [9,10] is applied to study this 
nonlinear system in frequency domain. The results are 
verified by numerical results and ANSYS simulations.

THEORETICAL MODEL

This research considers a straight beam and assumes 
that each cross-section of the beam is a plane that fol-
lows stress-strain law. Using Newton’s 2nd Law, Euler’s 
angle transformation, and Taylor series expansion, this 
study is able to obtain the basic equations of motion for 
the nonlinear beam. It is noted that any rotations in the 
beam are excluded; i.e., limiting it to planar motions. Ac-
cording to the nonlinear 2-D Euler-Bernoulli beam theory 
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[5, 10], the equation of motion for the 2D beam (see Fig. 
1) is shown as:

(1)

where  μW is the structural damping,   are the kW+βW 
  

3

linear and nonlinear spring term for the elastic founda-
tion, respectively.   ( )F=F x, t represents the external load
on the beam.
The boundary conditions for the beam are:

(2)

The dimensionless equation of motion is expressed as:
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The dimensionless boundary conditions are:
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In order to simplify the expression of the symbols, this study 
still uses ( )' and ( )* to represent d/dx and d/dτ, respectively 
in dimensionless equations. The DVA can be treated as a 
concentrated load on the beam, which can be expressed as:    

[ ( ) ] ( )s D Df W x,t -W δ x-l

By using the Newton’s law, the beam equation with DVA 
is obtained and in dimensionless form as:
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It is noted that the DVA can be derived by Newton’s law 
and is expressed as:

( ) ( ) ( )**
D D s Dm W τ -f W x,τ -W τ =   0 (6)

where mD is the dimensionless mass of the DVA, fs rep-
resents the dimensionless spring constant of the DVA, 
and is defined as

s
s

f
f =

mlω2

FORMULATION OF THE MOVING LOAD

From Ref. [6] the moving load function is written as:

Figure 1: Schematic of the beam model with DVA and 
moving loads
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is the space between the two moving loads, ( )δ x- vt-iΔ  
represents the location of the ith load, S(i,t) is a factor to 
judge if the moving load is located on the beam or not. 
δ(t) and H(t) are the Dirac and Heaviside function, re-
spectively. In this study, the discrete form of the moving 
load can be obtained by applying the orthogonal property 
on Eq. (7) and is expressed as:

(10)

In which ϕp(x) represents the mode shape of the beam 
and will be shown later in Section 4.1.
The Fourier series is applied and the pF is further writ-
ten as:
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and ΔT= ,NL=
v

integer part of L/Δ.

The moving frequency of the load is:

p
pπvΩ = ,p= , ,...

L
12 (15)

I.R. ANALYSIS OF THE BEAM SYSTEM WITH NO 
DVA

The frequency ratio plot

The method of multiple scales (MOMS) is applied to an-
alyze this nonlinear problem in frequency domain. Sup-
pose T0 is the fast-time scale term, T1, T2,… are the slow-
time scale terms, and let T0=τ, T1=ε2τ,.. the displacement 
of the beam is expressed as:
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( ) ( ) ( )... ...W x,τ,ε =εW x,T ,T +ε W x,T ,T3
0 0 1 1 0 1 (16)

Substituting Eq. (16) in to Eq. (5), we can get the equa-
tion of the ε1 order as:

W W
+ +ω W =
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∂ ∂
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2 4 20 0
02 4

0
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The equation of the ε3 order is:
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The equation of the ε3 order with no DVA is:

The boundary conditions for the order of ε1 and ε3 are:

( ) ( ) ( ) ( )
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" "
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3
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(20)

The mode shape for this hinged-hinged beam can also 
be found as:

(21)

where ϕn is the beam’s mode shape of the nth mode, and 
γn denotes the eigenvalue of the nth mode. The I.R. con-
dition can be justified by finding the relationship between 
modes’ frequency ratios and the elastic foundation spring 
constants. The transverse displacement of the beam is 
defined as:

( ) ( ) ( ) ( )n n n n
n= n=

W = ξ τ x ,W = ξ τ xφ φ
∞ ∞

∑ ∑0 0 1 1
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Substituting Eq. (22) into Eqs. (17) and (19) to obtain:
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By using orthogonal property of the mode shapes, the 
following dynamic equations are obtained:

( )m m mξ + γ +ω ξ =
24

0 0 0 (25)
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m m m m m p p p
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The relationship between modal frequency and the foun-
dation spring constant is now expressed as:

( ) , , ...m mω = +ω ,m=γ
1

2 24 1 2 3 (27)

The I.R. condition can be observed by the plot of dif-
ferent modal frequency ratios with various foundation 
spring constants  ( )ω

2
as shown in Fig.2. It is noted that 

due to the lower vibration amplitudes in higher modes 
(the 4th mode), the energy transferring is not easy to hap-
pen between much higher modes and the lower modes. 
It is also noted that in the case studied and from Eq. (26), 
the terms of ξ have only orders of 1 and 3. This implies 
that only the 1:3 I.R. can be triggered in this system. The 
frequency ratio of 1:2 is not necessary to be considered.
Therefore, only the 1st & 2nd modes and the 1st & 3rd 

modes with the frequency ratio of 1:3 are considered 
in this study. This study thus provides a wider range of 
possibilities for I.R. conditions than the methodology pro-
posed by Wang and Lu [5].

Figure 2: Plot of Freq. Ratio and ϖ

Frequency response

The frequency response of the nonlinear beam system 
can be got by the fixed points plots. This study gives an 
example of the 1st and the 3rd modes to demonstrate 
the frequency response. The general solution of the dis-
placement is assumed as

( ) ( ) ( )m mm miω T -iω T-iς iς
mm mξ τ =B T e e +B T e e0 0

0 1 1

and substituted into Eq. (26) to obtain the following equation:

(28)
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(28)

The forcing function is assumed to be:

(29)

In which σ is the tuned frequency. It is noted that σ=0 
represents the Ω equals the natural frequency. For the 1st 
mode (m=1), the secular terms of harmonics of ω1 and 
ω3-2ω1 are selected from the right hand side of Eq. (28). 
For the 3rd mode (m=3), the secular terms of harmonics 
of  ω3 and 3ω1 are selected from the right hand side of 
Eq. (28). The solvability conditions are obtained to let 
the sum of secular terms to be 0. The fixed points plots 
are made for the amplitudes of the beam (B1 and B3) 
with the tuned frequency (σ). The I.R. can be analyzed. 
The mathematical procedure is too complicate and is not 
detailed here.

Internal resonance analysis

Figs. 3 and 4 demonstrate the frequency response (fixed 
points plots) of the 1st and 2nd modes. Fig. 3 and Fig. 4 
are the cases when the 1st and the 2nd mode was excit-
ed, respectively. Figs. 3(a) and 4(a) are the fixed points 
plots of the 1st modes. Figs. 3(b) and 4(b) are the fixed 
points plots of the 2nd mode. Figs. 5 and 6 demonstrate 
the frequency response (fixed points plots) of the 1st & 
3rd modes. Fig. 5 and Fig. 6 are the cases when the 1st 
and the 3rd mode was excited, respectively. Figs. 4 and 
6 show that when the higher modes (2nd or 3rd) were ex-
cited, the lower mode (1st mode) still has higher ampli-
tude. This demonstrates the energy transferring from the 
higher modes to the lower mode(s) and the unexcited 
mode(s) may have larger amplitudes than the excited 
mode(s). These results demonstrate the unique char-
acteristics of a nonlinear system. The plot of different 
modal frequency ratios (Fig.2) plays an important role in 
analyzing the I.R. conditions.

(a) (b)

Figure 3: Fixed points plots with no DVA (1st mode was 
excited) (a) response of the 1st mode, (b) response of 

the 2nd mode

(a) (b)
Figure 4: Fixed points plots with no DVA (2nd mode was 
excited)(a) response of the 1st mode, (b) response of 

the 2nd mode

(a) (b)
Figure 5: Fixed points plots with no DVA (1st mode was 
excited)(a) response of the 1st mode, (b) response of 

the 3rd mode

(a) (b)

Figure 6: Fixed points plots with no DVA (3rd mode was 
excited) (a) response of the 1st mode, (b) response of 

the 3rd mode

Numerical verification

The 4th order Runge-Kutta method (RK-4 method) is 
used to verify the results predicted by Fig. 2. The small 
perturbation technique is applied and assuming:

( )n n n
n=

W= ξ +ξ φ
∞

∑
1

 (30)

where ξn is the average term, the   nξ is the perturbed 
term. Substituting Eq. (30) into Eq. (3) to get the dynam-
ic equation for the RK-4 method. Figs. 7 (a), (b) and (c) 
are the time responses by using RK-4 to verify the fixed 
points plots for the 1st mode when the 1st mode was 
excited, the 1st mode when the 2nd mode was excited 
and the 3rd mode when the 3rd mode was excited, re-
spectively. These figures show that the numerical results 
agree with the semi-analytical predictions from fixed 
points plots. Again, Fig. 2 shows its valuable in finding 

( ) ( )( )j j j j-iς iω T iς -iω T
j j j

j=
B T e e +B T e e φ

∞ 
 
 
∑ 0 0

1 1
1

( ) ( )( )k kk k
miω T -iω T-iς iς

k k k m
k=

m

sinγ xdx
B T e e +B T e e dx +F

sin γ xdx
φ φ

∞  
 
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∫∑
∫

0 0

1

0
1 1 1 21

0

( ) ( )m m m
i ω +ε σ T iε σT iω T iω TiσTiΩτ

m m m mF=f e =f e =f e e =f e e
2 20 0 0 01
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I.R. conditions.

(a)

(b)

(c)
Figure 7: Numerical verification of fixed points plots (a) 
to verify Fig. 3(a), (b) to verify Fig. 4(a), (c) to verify Fig. 

6(b)

ANSYS simulation

This study uses ANSYS to simulate the continuous con-
centrated moving load on the elastic beam resting on an 
elastic foundation. The parameters are chosen the same 
as the data from the work of Samani and Pellicano [6]. 
The parameters for the steel beam are listed in Table 1.
The dimensions are 4000mm, 300mm and 300mm for 
the beam’s length, width and height, respectively. Solid-

Density (kg/m3) 7820
Young’s Modulus (Pa) 2.068E+11

Poisson’s Ratio 0.3

Table 1: Material parameters for the steel beam

Works™ is used to generate the beam model. The con-
centrated load is set as 309 N. The concentrated load 
moving speeds are set from 5 m/s ~ 30 m/s and the 
spaces between loads are 1 m~8 m. The ANSYS sim-
ulation is performed and the results are collected and 
made by a 3D plot. For example, Fig. 8 (a) shows the 
case of no elastic foundation and the moving speed is 25 
m/s, the space between two loads is 6m. Fig. 8 (b) shows 
the case of no elastic foundation and the moving speed 
is 5 m/s, the space between two loads is 1m. Fig. 8(a), 
shows the maximum amplitude is 24.681mm. It agrees 
with the result form the prediction from Samani and Pel-
licano [6], which was 25.27mm.
Next verification is to study a rather larger loading (e.g. 
a car) and with an elastic foundation. For this hinged-
hinged elastic beam, a concentrated moving load of 
12250N is assumed. The elastic foundation stiffness is 
set to 1.5925 E-04 N/mm3. This value of the foundation 
stiffness is based on the theoretical prediction for the 
I.R. condition. The 3D plot of the amplitudes for different 
combination of moving speed and space is shown in Fig. 
9. Fig. 9 shows that when the load moving speed is 26
m/s and the space is 8 m, the maximum beam amplitude 
is 181.79mm, which agrees with the theoretical predic-
tion of 150.9 mm.

Figure 8: 3D maximum amplitude plot by ANSYS sim-
ulation (no elastic foundation) (a) v=25 m/s, Δ=6 m, (b) 

v=5 m/s, Δ=1 m
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Figure 9: 3D maximum amplitude plot by ANSYS simu-
lation (with elastic foundation) (a) v=26 m/s, Δ=8 m, (b) 

v=5 m/s, Δ=1 m

BEAM SYSTEM WITH DVA

Since I.R. conditions are confirmed. This Section is fo-
cusing on the damping effect of the combination of DVA 
parameters to reduce the beam vibration and to avoid 
the I.R. of this system to complete a practical engineer-
ing application. It is also noted that for the sake of sim-
plicity, only the 1st and the 3rd modes are considered in 
the beam case with DVA attached.

Theoretical beam model with DVA

Eq. (6) can be rewritten to include the 1st and the 3rd modes:

( )( )

( )( ) ( )( )

( )( )

iω T-iς** s
D D D

D

-iω T -iς iω Tiςs s
D D

D D

iς -iω Ts
D

D

f
W + W = x B e e +

m
f f
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m

s

D

f
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The solution of Eq. (31) is assumed as:
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DW =D e e +D e e +D e e +D e e1 0 1 0 3 3 0 3 3 01 1

1 1 3 3 (34)

Eqs. (33) and (34) can be substituted into Eq. (5) to get 
the nonlinear beam system with the DVA attached. This 
study then applies MOMS method for the frequency re-
sponse analysis. For the sake of simplicity, the procedure 
of formulating different time scales dynamic equations is 
not detailed here.

Frequency response analysis

The forcing function is again assumed as:

The secular terms are selected and set to 0 to get the 
solvability conditions as before. Figs. 10 (a) and (b) are 
the fixed points plots for the 1st mode and the 3rd mode, 
respectively, when the 1st mode was excited. Figs. 11(a) 
and (b) are the fixed points plots for the 1st mode and the 
3rd mode, respectively, when the 3rd mode was excit-
ed. These plots show that no I.R. condition is triggered. 
There is no energy transferring between the modes when 
the DVA is applied. Again, RK-4 method is applied and 
follow the same procedure of Section 4.4; Figs. 12 (a) 
and (b) provide the verifications of fixed points plots with 
the numerical results. They agree with each other very 
well and confirm the results from the fixed points plots.

(a)

(b)
Figure 10: Fixed points plots with DVA combination mD 

=0.1, lD =0.5, fs =9 (1st mode was excited), (a) response 
of the 1st mode, (b) response of the 3rd mode

( ) ( )m m m
i ω +ε σ T iε σT iω T iω TiσTiΩτ

m m m mF=f e =f e =f e e =f e e
2 20 0 0 01
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(a)

(b)
Figure 11: Fixed points plots with DVA combination mD 
=0.1, lD =0.5, fs =9 (3rd mode was excited), (a) response 

of the 1st mode, (b) response of the 3rd mode

(a)

(b)

Figure 12: Numerical verification of fixed points plots (a) 
to verify Fig. 10(a), (b) to verify Fig. 11(b)

Damping effects of DVA

This section discusses the vibration reduction effects of 
DVA according to different mass (mD), location (lD), and 
spring constant (fs). Using the solvability conditions of 
the excitation to the first mode and the third mode of the 
system, we can make fixed points plots according to the 
different combinations of DVA parameters (mD=0.01~0.1, 
lD=0.1~0.5, fs=1, 5, 9), and extract their maximum ampli-
tudes from each fixed points plot, so we can get the max-
imum amplitude of each mode when the system is affect-
ed by different DVA parameters. Since the amplitude of 
the third mode (see Fig.5(b), approximates to 9.6E-006), 
is much smaller than that of the first mode when the first 
mode was excited, this study does not analyze the vibra-
tion reduction of the third mode when the first mode was 
excited. The amplitude of the first mode (see Fig.11) is 
much smaller than that of the third mode when the third 
mode was excited, this study does not analyze the vibra-
tion reduction of the first mode when the third mode was 
excited. The results of vibration reduction are shown in 
Tables. 2 and 3. Table 2 shows the 1st mode maximum 
amplitudes when the 1st mode was excited and for differ-
ent combinations of mD, lD and fs. Table 3 demonstrates 
the 3rd mode maximum amplitudes when the 3rd mode 
was excited and for different combinations of mD, lD and 
fs. Tables 2 and 3 conclude that the combination of mD 
=0.1, lD=0.5 and fs=9 provides the best damping effect 
on this beam vibration system. The corresponding am-
plitudes for the 1st mode and the 3rd mode are 0.008398 
and 0.0000935, respectively.
The damping effects can be seen by comparing with no 
DVA system. Figs. 10 and 11 are the fixed points plots 
with the DVA combination of mD=0.1, lD=0.5 and fs=9 and 
for the 1st and 3rd mode, respectively. Figs. 5 and 6 are 
the plots for no DVA attached. Comparing with Figs. 10 
and 5 and Figs. 11 and 6, the damping effects of the DVA 
can be obviously demonstrated.
Finally, this study uses ANSYS to simulate the damping 
effects of the DVA combination with a moving load. The 
case of maximum amplitude with no DVA attached is 
considered, which is the moving load speed v=26 m/s 
and the moving load space Δ=8 m. The mass of the 
DVA is mD=0.1 with the length=400mm, width=30mm, 
and height = 30mm. The simulation results are shown 
in Figs. 13~15. Fig. 13 is the case of DVA combination 
of mD=0.1, lD=0.5 and fs=9. The amplitude is 38.042mm 
from ANSYS simulation. The theoretical prediction is 
shown on the last row in Table 2 (0.008398 (dimension-
less displacement)). For a beam of 4000mm, the theo-
retical beam displacement is 33.592mm. The error with 
the theoretical prediction is 11.7%. Fig. 14 is the case 
of DVA combination of mD=0.02, lD=0.25 and fs=1. The 
amplitude is 46.584mm from ANSYS simulation. The 
theoretical prediction is shown on the first row in Table 2 
(0.009746 (dimensionless displacement)). The error with 
the theoretical prediction is 16.3%. Fig. 15 is the case of 
DVA combination of mD=0.06, lD=0.25 and fs=5. The am-
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DVA Mass DVA Position
Amp.

fs=1 fs=5 fs=9
0.02
0.06
0.1

0.25
0.009746
0.009570
0.009275

0.009327
0.008937
0.008639

0.008926
0.008883
0.008536

0.02
0.06
0.1

0.5
0.009624
0.008793
0.008490

0.008788
0.008470
0.008415

0.008866
0.008574
0.008398

Table 2: The 1st mode beam amplitude with DVA attached, when the 1st mode is excited

DVA Mass DVA Position
Amp.

fs=1 fs=5 fs=9
0.02
0.06
0.1

0.25
0.0001073
0.0001069
0.0001042

0.0001062
0.0001061
0.0000976

0.0001053
0.0001045
0.0000968

0.02
0.06
0.1

0.5
0.0001055
0.0001053
0.0001050

0.0001037
0.0001032
0.0000948

0.0001021
0.0001014
0.0000935

Table 3: The 3rd mode beam amplitude with DVA attached, when the 3rd mode is excited

Figure 13: ANSYS simulation with DVA, mD=0.1, lD=0.5, fs=9

Figure 14: ANSYS simulation with DVA, mD=0.02, lD=0.25, fs=1
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Figure 15: ANSYS simulation with DVA, mD=0.06, lD=0.25, fs=5

Case studied (Amp.) Theoretical prediction 
(mm) ANSYS Simulation (mm) Error (%)

mD=0.1, lD=0.5, fs=9 33.592 38.042  11.7%
mD=0.02, lD=0.25, fs=1 38.984 46.584 16.3%
mD=0.06, lD=0.25, fs=5 35.748 44.969 20.5%

Table 4: Comparison between theoretical and simulated amplitudes

plitude is 44.969mm from ANSYS simulation. The theo-
retical prediction is shown on the second row in Table 2 
(0.008937 (dimensionless displacement)). The error with 
the theoretical prediction is 20.5%. An explicit tabular 
comparison between theoretical and simulated ampli-
tudes is shown on Table 4. Since the theoretical predic-
tions are based on the nonlinear assumption, the energy 
transferring between lower and higher modes is consid-
ered. The ANSYS simulation results are linear, and the 
beam deformation directly responds to the excited load. 
In other words, in a linear system, the energy from the 
external load directly delivers to a single beam mode. 
However, the errors are almost less than 20% and the 
trends are the same as the theoretical results. The non-
linear model proves its application in practical problems. 

CONCLUSIONS

This study improves the author’s earlier work (Wang and 
Lu [5]) for a wider range of prediction on internal reso-
nance conditions. The continuous concentrated moving 
load is applied on this nonlinear beam system. Instead of 
complicated methodology and calculation, this study pro-
vides an extended numerically graphical plot for different 
modal frequency ratios and the foundation spring con-
stant, which demonstrates a better way to identify the in-
ternal resonance conditions of the nonlinear system. The 
results show that the 1st & the 2nd and also the 1st & the 3rd 
modes are possible to trigger the I.R., which was not pre-
dicted in Wang and Lu’s work ([5]). The fixed points plots 
are made to verify this finding. The moving load with mov-
ing speed v=26 m/s and the space Δ=8m between the 
loads causes the resonant condition of the beam system 
and has the maximum vibration amplitude. The DVA with 

the combination of mD=0.1, lD=0.5 and fs=9 provides the 
best damping effect on this beam system. Both numerical 
and ANSYS simulations verify this finding.
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