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The Gaussian or normal distribution is vital in most areas of industrial engineering, including simulation. For example, 
the inverse of the Gaussian cumulative density function is used in all simulation software (e.g., ARENA, ProModel) 
to generate a group of random numbers that fit Gaussian distribution. It is also used to estimate the life expectancy 
of new devices. However, the Gaussian distribution that is truncated from the left side is not defined in any simu-
lation software. Estimation of the expected life of used devices needs left-sided truncated Gaussian distribution.  
Additionally, very few works examine generating random numbers from left-sided truncated Gaussian distribution. A 
high accuracy mathematical-based approximation to the left-sided truncated Gaussian cumulative density function is 
proposed in the current work. Our approximation is built based on Polya’s approximation of the Gaussian cumulative 
density function. The current model is beneficial to approximate the inverse of the left-sided truncated Gaussian cu-
mulative density function to generate random variates, which is necessary for simulation applications. 

Key words: gaussian distribution, normal distribution, random variate generation, cumulative density function,        
mathematical approximation, truncated normal distribution

INTRODUCTION

Random variate generation is an important method in 
simulation and statistical computing. Statisticians devel-
oped different methods, tools, models, approximations, 
and algorithms to generate random variates over many 
decades. The difficulty of variate generation depends on 
the complexity of the cumulative probability mass func-
tion (CDF). The simplest method is inverse transform 
sampling (ITS), a method for pseudo-random number 
sampling which randomly generates variates using the 
CDF inverse. In the literature, ITS appears in different 
names, such as inversion sampling (e.g., [1-2]), in-
verse probability integral transform (e.g., [3-4]), inverse 
transformation method (e.g., [5-6]), Smirnov transform 
(e.g.,[7-8]) and golden rule (e.g., [9-10]). ITS method 
can be performed in two steps: 1. By generating random 
numbers based on the uniform distribution over the do-
main [0:1] (i.e., N~U[0:1]). 2. And by substituting each 
generated random number into the inverse of the CDF. 
The generated variates should fit the probability mass 
function (PDF) of a particular distribution. Theoretically, 
this method can be used with any distribution, as long 
as the curve of CDF can be sketched. In addition, with 
using ITS, random variates can be generated easily from 
discrete distributions. However, we need to compute 
CDF by integrating the PDF for continuous distributions, 
which is mathematically impossible for many distribu-

tions (e.g., Gaussian distribution). Therefore, engineers 
and statisticians developed other methods. As a pos-
sible solution to the irreversible CDF, the inverse may 
be approximated mathematically. In this paper, ITS will 
be used to generate variates from a left-sided truncated 
Gaussian distribution by approximate the inverse math-
ematically. Besides the ITS method, other methods are 
introduced in the literature, such as the imperial method 
[11-13] and acceptance-rejection methods [14-19]. Ro-
mano [20] developed an algorithm to generate random 
variates from the Madland–Nix fission energy spectrum, 
assuming a constant compound nucleus cross-section is 
given based on physics considerations. Then, he wrote a 
program to generate variates using the developed algo-
rithm. Favaro et al. [21] presented how to generate ran-
dom variates for a more general class of tilted α-stable 
distributions, referred to as the class of Laguerre-type 
exponentially tilted α-stable distributions. Recalling the 
ITS method, if a mathematical approximation function 
of a CDF inverse is available, random variates can be 
generated from that approximation. The fitness of the 
generated random variates to the original distribution 
depends on the approximation accuracy [24]. For exam-
ple, Polya developed a model to approximate the CDF 
of Gaussian distribution. As a result, the ITS method can 
generate Gaussian distribution-based random variates 
by applying on the inverse of Polya’s model. This will be 
explained in detail in the following sections. In this paper, 
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an approximation to left-sided truncated Gaussian distri-
bution is derived from Polya’s normal distribution approx-
imation. The derived approximation will be inversed and 
then used to generate random variates. In general, CDF 
of truncated Gaussian distribution is difficult to estimate, 
so engineers usually used either an approximation pro-
gram or special software to do this job. 

POLYA’S APPROXIMATION 

George Polya (1887-1985) developed Polya's approx-
imation, the Hungarian-American mathematician and 
father of problem-solving in mathematics education. Po-
lya’s approximation to the Gaussian distribution CDF is 
represented by Equation 1 [22]. After examining the ap-
proximation equation, some findings and notes are pro-
vided in Equation 2-8 and Figure 1.

Ф(𝑧𝑧) ≅
1
2
�1 + �1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �

−2(𝑧𝑧)2

𝜋𝜋
��

1
2
� , 𝑧𝑧𝑧𝑧[0:∞] (1) (1)

Although Polya’s approximation is one of the first intro-
duced models, it is one the best. Its simplicity and the 
possibility to be inversed are big advantages, besides 
the high accuracy. In Equation 2, Polya’s approxima-
tion is re-written on the domain of [-∞:∞] using the fact,            
Ф(-z) = 1 - Ф(z).

Ф(𝑧𝑧) ≅

⎩
⎪⎪
⎨

⎪⎪
⎧

1 −
1
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−2(𝑧𝑧)2

𝜋𝜋
��

1
2
� , 𝑧𝑧 < 0

1
2
�1 + �1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �

−2(𝑧𝑧)2

𝜋𝜋
��

1
2
� , 𝑧𝑧 ≥ 0

 (2) (2)

A deviation function, D(z) is defined to assess the Polya’s 
approximation accuracy, as addressed in Equation 3: 

𝐷𝐷(𝑧𝑧) =
1
2
�1 + �1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �

−2(𝑧𝑧)2

𝜋𝜋
��

1
2
� − Ф(𝑧𝑧), 𝑧𝑧𝑧𝑧[0:∞] (3) (3)

The property mentioned above, Ф(-z) = 1 - Ф(z), leads 
to estimate D(z) in the negative domain of Z score, as in 
Equation 4.  

𝑫𝑫(−𝒛𝒛) = −𝑫𝑫(𝒛𝒛)(𝟒𝟒) (4)

Figure 1 shows the deviation of Polya’s approximation 
from real values. The maximum deviation is 0.00314583 
over the region of [0:∞], and this maximum value is lo-
cated at Z=1.654. According to Equation 4, the devia-
tion curve must reach the same but negative value (i.e., 
-0.00314583) at Z=-1.654. Thus, Polya’s approximation 
maximum deviation is 0.00314583 for the entire domain, 
[-∞:∞]. Figure 1 and Equation 1 also show a comparison 
between Polya’s approximation and Cadwell’s approx-
imation. Polya’s approximation is more accurate than 
Cadwell’s approximation of maximum deviation from the 

real over the domain [0:∞]. The same matter is conclud-
ed over the domain [-∞:0], by applying Equation 4. Fur-
ther, by comparing the equations, Polya’s approximation 
is much simpler than Cawell’s approximation. The selec-
tion of Cadwell’s approximation to be compared with Po-
lya’s is due to three reasons: 1. Both models share most 
equation terms and the only difference between them is 
the exponent, 2. Popularity of Cadwell’s approximation 
and 3. Cadwell’s approximation introduced after Polya's 
of few years by the well-known worldwide mathemati-
cian, J. H. Cadwell. 

(5)Ф(𝑧𝑧) ≅
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−
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1
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�    𝑍𝑍 ≥ 0

 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝐶𝐶𝐶𝐶′𝑠𝑠 𝐴𝐴𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴𝑒𝑒𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

Cadwell's Approximation

Figure 1: Change of deviation, D(z) vs Z score for both 
Polya’s and Cadwell’s approximations

Polya’s approximation can be differentiated to estimate 
PDF as shown in Equation 6.  Equation 7 is a simplifi-
cation of Equation 6. This equation is used to build the 
left-sided truncation Gaussian distribution.

∅(𝑧𝑧) ≅

⎩
⎪
⎪
⎨

⎪
⎪
⎧ −𝑧𝑧 × exp�−2𝑧𝑧2

𝜋𝜋 �

𝜋𝜋 �1 − exp �−2𝑧𝑧2

𝜋𝜋 ��
, 𝑧𝑧 < 0

𝑧𝑧 × exp�−2𝑧𝑧2

𝜋𝜋 �

𝜋𝜋 �1 − exp �−2𝑧𝑧2

𝜋𝜋 ��
, 𝑧𝑧 ≥ 0

 (6) (6)

∅(𝑧𝑧) ≅
−𝑧𝑧2 × exp �−2𝑧𝑧2

𝜋𝜋 �

|𝑧𝑧|𝜋𝜋 �1 − exp �−2𝑧𝑧2

𝜋𝜋 ��
 (7) (7)

One of the most useful properties of Polya’s approx-
imation is the ability to inverse the CDF equation.                           
If U(R) = F-1 (Ф(z)) and R = Ф(z), then U(R) can be pre-
sented as in the following equation (Equation 8).  
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𝑈𝑈(𝑅𝑅) =

⎩
⎪
⎨

⎪
⎧− �

−𝜋𝜋
2

ln(1 − [1 − 2𝑅𝑅]2�
1
2 ,𝑅𝑅𝑧𝑧[0: 0.5) 

�
−𝜋𝜋
2

ln(1 − [2𝑅𝑅 − 1]2�
1
2 ,𝑅𝑅𝑧𝑧[0.5: 1]

(8) (8)

APPROXIMATION OF LEFT-SIDED TRUNCATED 
GAUSSIAN DISTRIBUTION CDF. 

In this section, an approximation to CDF of left-sided 
truncated Gaussian distribution is proposed. Truncated 
Gaussian distribution has been found in almost all indus-
tries. Once a practitioner truncates a Gaussian distributed 
population from left, right or both sides for any reason, the 
truncated population fits truncated Gaussian distribution. 
There are many situations where the population is trun-
cated, such as truncation of less than acceptable level 
of a test score, weight, height, and specimen strength. 
Truncation is primarily limited to estimating used devic-
es' reliability and truncation of unfit products (i.e., exceed 
the upper specification level or beneath the lower specifi-
cation level). The truncated Gaussian distribution due to 
scrapping/reworking unfit products is well-detailed in the 
literature, such as [23-28]. Despite the plenty of industrial 
problems on truncated Gaussian distribution, the theoret-
ical research, such as estimating properties/criteria or ap-
proximating PDF and CDF is still immature. The reason 
behind that could be the mathematical complexity of the 
distribution. However, applications on truncated Gaussian 
distribution have been found in the literature intensively.
Figure 2 shows left-sided truncated Gaussian distributions 
at truncation points of ZL=-1 and ZL=0 concerning the un-
truncated Gaussian distribution.  Since the area under the 
PDF curve refers to the summation of all probabilities and 
must equal 1, the truncated area should be added to the 
untruncated area to keep its area equal to 1. This makes 
the PDF curve scaled up. 

Figure 2: A comparison between the left-sided truncated 
standard Gaussian distribution at two different truncation 

points and original distribution

The PDF of the general left-sided truncated distribution 
(( i.e., fT (x,xL )) is shown in Equation 9. According to the 
equation, the value of fT (x,xL )  is normalized original PDF 
value (i.e., f(x) in Equation 9). To normalize the truncated 

curve, we divide the original curve values by the area 
under the original PDF curve over the newly defined 
domain of [xL:∞].  Equation 10 represents the CDF of 
the general left-sided truncated distribution.

𝑓𝑓𝑇𝑇(𝑒𝑒, 𝑒𝑒𝐿𝐿) =
𝑓𝑓(𝑒𝑒)

∫ 𝑓𝑓(𝑒𝑒)∞
𝑒𝑒𝐿𝐿

𝐶𝐶𝑒𝑒
𝐶𝐶𝑒𝑒 (9) (9)

𝐹𝐹𝑇𝑇(𝑒𝑒, 𝑒𝑒𝐿𝐿) = �
𝑓𝑓(𝑒𝑒)

∫ 𝑓𝑓(𝑒𝑒)𝐶𝐶𝑒𝑒∞
𝑒𝑒𝐿𝐿

𝐶𝐶𝑒𝑒
𝑒𝑒

𝑒𝑒𝐿𝐿
 (10) (10)

The CDF of the left-sided truncated standard Gaussian 
distribution is addressed in Equation 11. 

Ф𝑇𝑇(𝑧𝑧, 𝑧𝑧𝐿𝐿) = �
∅(𝑧𝑧)

∫ ∅(𝑧𝑧)𝐶𝐶𝑧𝑧∞
𝑧𝑧𝐿𝐿

𝑧𝑧

𝑧𝑧𝐿𝐿
𝐶𝐶𝑧𝑧 (11) (11)

We can approximate the left-sided truncated standard 
Gaussian distribution, ФT (z,zL ) by substituting  (z) ap-
proximation (i.e., Equation 7) in Equation 11, as ad-
dressed in Equation 12 

∅ 

Ф𝑇𝑇(𝑧𝑧, 𝑧𝑧𝐿𝐿) ≅ �

−𝑧𝑧2 × exp �−2𝑧𝑧2

𝜋𝜋 �

|𝑧𝑧|𝜋𝜋 �1 − exp �−2𝑧𝑧2

𝜋𝜋 ��

∫
−𝑧𝑧2 × exp �−2𝑧𝑧2

𝜋𝜋 �

|𝑧𝑧|𝜋𝜋 �1 − exp �−2𝑧𝑧2

𝜋𝜋 ��
𝐶𝐶𝑧𝑧∞

𝑧𝑧𝐿𝐿

𝑧𝑧

𝑧𝑧𝐿𝐿
𝐶𝐶𝑧𝑧 (12) (12)

In this paper, the truncation area is assumed to be equal 
or less than half (i.e., zL<0). The solution of Equation 
12 is led to Equation 13. If Z=0, ФT (z,zL ) can be solved 
using the upper or lower part of the equation, leading 
to the exact estimate.  

Ф𝑇𝑇(𝑧𝑧, 𝑧𝑧𝐿𝐿) ≅

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧�1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �−2𝑧𝑧𝐿𝐿2

𝜋𝜋 ��
1/2

− �1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �−2𝑧𝑧2

𝜋𝜋 ��
1/2

1 + �1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �−2𝑧𝑧𝐿𝐿2

𝜋𝜋 ��
1/2  , 𝑧𝑧𝐿𝐿 ≤ 𝑧𝑧 ≤ 0

�1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �−2𝑧𝑧2

𝜋𝜋 ��
1/2

+ �1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �−2𝑧𝑧𝐿𝐿2

𝜋𝜋 ��
1/2

1 + �1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �−2𝑧𝑧𝐿𝐿2

𝜋𝜋 ��
1/2 , 𝑧𝑧𝐿𝐿 ≤ 0 ≤ 𝑧𝑧 

   (13)(13)

APPROXIMATION OF THE INVERSE OF 
THE LEFT-SIDED TRUNCATED GAUSSIAN              
DISTRIBUTION. 

In this section, an approximation to the inverse of the 
left-sided truncated standard Gaussian distribution is 
proposed. Since Equations 13 has only one term of z, 
the equation can be inversed. If U(R) = F-1 (Ф(z,zL))and 
R=Ф(z,zL ), then U(R) can be written as addressed in 
Equation 14.  
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𝑈𝑈(𝑅𝑅) ≅

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

−�
−𝜋𝜋
2
𝐿𝐿𝐴𝐴 �1 − ��1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �

−2𝑧𝑧𝐿𝐿2

𝜋𝜋
��

1
2
− 𝑅𝑅 �1 + �1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �

−2𝑧𝑧𝐿𝐿2

𝜋𝜋
��

1
2
��

2

� ,    𝑧𝑧𝐿𝐿 ≤ 𝑧𝑧 ≤ 0  

�
−𝜋𝜋
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𝐿𝐿𝐴𝐴 �1 − �𝑅𝑅 �1 + �1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �

−2𝑧𝑧𝐿𝐿2

𝜋𝜋
��

1
2
� − �1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �

−2𝑧𝑧𝐿𝐿2

𝜋𝜋
��

1
2
�

2

� ,      𝑧𝑧𝐿𝐿 ≤ 0 ≤ 𝑧𝑧

(14)(14)

By generating random numbers of R~U[0,1] and substi-
tuting them in Equation 14, we generate random num-
bers based on left-sided truncated standard Gaussian 
distribution. Moreover, using the formula, z=(U(R)-*μ 
)/*σ, we can generate random numbers based on the 
non-standard distribution (i.e., *μ ≠0, *σ ≠0) where *μ 
and *σ are the mean and the standard deviation of the 
original Gaussian distribution before truncation, respec-
tively. 

ACCURACY OF THE INTRODUCED
APPROXIMATIONS 

The fitness to the original of the introduced approxima-
tion of the CDF and its inverse is presented in this sec-
tion. The accuracy is estimated in terms of the maximum 
deviation of the approximation results from the true re-
sults. A new deviation function is defined, as addressed 
in Equation 15. The function consists of two parts ac-
cording to the domain of Z value (i.e., Z≤0 or Z≥0). We 
can use any part of the equation for Z=0, as the function 
is continuous at this point.   The deviation function is re-
lated to the change in deviation with a Z score. 

𝐷𝐷𝑇𝑇(𝑧𝑧) =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧�1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �−2𝑧𝑧𝐿𝐿2

𝜋𝜋 ��
1/2

− �1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �−2𝑧𝑧2

𝜋𝜋 ��
1/2

1 + �1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �−2𝑧𝑧𝐿𝐿2

𝜋𝜋 ��
1/2 −Ф(𝑧𝑧), 𝑧𝑧𝐿𝐿 ≤ 𝑧𝑧 ≤ 0 

�1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �−2𝑧𝑧2

𝜋𝜋 ��
1/2

+ �1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �−2𝑧𝑧𝐿𝐿2

𝜋𝜋 ��
1/2

1 + �1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �−2𝑧𝑧𝐿𝐿2

𝜋𝜋 ��
1/2 −Ф(𝑧𝑧), 𝑧𝑧𝐿𝐿 ≤ 0 ≤ 𝑧𝑧

 (15)(15)

Figure 3 shows the deviation at five different truncation 
points (ZL) (i.e., -4, -3, - 2, -1 and 0). Usually, the trun-
cation point is rarely located at a point more than ZL=-2 
on the Z-score. In this study, we reported the deviation 
value until ZL=0. The maximum deviation at ZL=-4, ZL=-
3, ZL=-2, ZL=-1, ZL=0 is 0.00314, 0.00317, 0.003357, 
0.00386 and 0.006276, respectively. It is clearly noticed 
that the maximum of all curves maximum deviation is for 
ZL=0 with a value of 0.006276. In the literature, most 
approximations of Gaussian distribution CDF have a 
maximum deviation between 0.02 and 0.002. Further, we 
never found an approximation in the literature that is less 
than 0.02. This means that our introduced approximation 
is very accurate and definitely can be used without any 
worries about the results. 

Figure 3: Deviation of the introduced approximation of 
the left-sided truncated Gaussian distribution CDF from 

the real vs. Z-score 

The deviation between the introduced approximation 
CDF inverse and the true results is illustrated, as ad-
dressed in Equation 16. The new deviation function has 
two parts according to the domain of z (i.e., z≤0 or 0≤z). 
The R can be a random number generated from a uni-
form distribution over the domain [0:1]. 

𝐷𝐷𝐼𝐼𝐼𝐼𝐼𝐼(𝑅𝑅, 𝑧𝑧𝐿𝐿  )

=  
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 (16)(16)

Figure 4 shows the deviation function value versus Z 
score at different truncation points. In all curves, the 
deviation decreases with R approaching 0.5 and expo-
nentially increases with R approaching 1. For example, if 
the resolution of R is 0.01, then the maximum deviation 
is less than 0.08 at 0.99. Since Ф^(-1) (R=1) equals in-
finity, we need to ignore the deviation between the ap-
proximation and the true value at R=1. It is customary 
in mathematics to see two models approaching infinity 
at the same x value and at the same time the difference 
between them approaching infinity as well.Further, the 
difference between the two approaches to infinity models 
is constant, if and only if the subtraction between them 
after removing the diminishing terms is constant. Since 
the inverse of the Gaussian distribution CDF approxi-
mation is a complex integral equation, it is impossible to 
find a solvable mathematical approximation with a con-
stant distance from the original inverse equation when 
R approaches 1 (i.e., the function values approach infin-
ity). Therefore, the deviation between the inverse of the 
left-sided truncated Gaussian distribution CDF and any 
past or future model must approach infinity when R ap-
proaches 1. Further, it is noticeable that there is a peak 
at near R=0. However, the deviation at the exact value 
of R=0 equals 0. 
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Figure 4: Deviation of introduced approximation of   
inverse of left-sided truncated Gaussian distribution 

CDF from true values vs. Z score

EXAMPLE ON GENERATING RANDOM VARIATES 

In this section, two examples will be given. The first is 
to apply the current model as an approximation to the 
truncated left-sided guasian distribution. The second is 

the application of the current model as a generator of 
random variables from left-sided guasian distribution. 
Both are related to a real case of references. The first ex-
ample is an application on production of pure alumimun 
foil, as addressed in [29]. A sample is collected and the 
foil that purity is less than 99% is discarded. The sample 
after discarding the unfit foils is left sided truncated gua-
sian distribution. The sample mean and standard devia-
tion around the mean are 0.992 and 0.0005, repectively. 
Consider our model, we can estimate the percent of foils 
that are purer than 0.993 (i.e., ZL=-4, Z=2), as requested 
in their case. The answer is 0.0228. In the second ex-
amples, generating random variates from left-sided trun-
cated Gaussian distribution are provided. The example 
was brought from [30] to give more practicality. First, we 
generated 50 random numbers (i.e., numbers generat-
ed from a uniform distribution over the domain [0:1]) to 
generate random variables. Then, we generated random 
variates of Polya’s Gaussian distribution approximation. 
Lastly, we generated random variate from five different 
examples of left-sided truncated Gaussian distribution 
using our approximation. 

Table 1: Example on random variates generation from left-sided truncated Gaussian Distribution

No RN Variate Variate Variate Variate Variate Variate
Untruncated 
( Polya’s), 
µ=0, σ=1

ZL=-2, 
*µ=0, *σ=1

ZL=-1, 
*µ=0, *σ=1

ZL=-2, 
XL=5, 

*µ=11, *σ=3

ZL=-1, 
XL=49,  

*µ=51, *σ=2

ZL=-1, 
XL=158, 

*µ=200, *σ=21
1 0.10 -1.27 -1.17 -0.70 7.48 49.60 185.30
2 0.14 -1.07 -1.00 -0.59 8.01 49.81 187.51
3 0.24 -0.70 -0.65 -0.36 9.04 50.28 192.46
4 0.44 -0.15 -0.12 -0.07 10.64 50.86 198.49
5 0.49 -0.01 -0.01 -0.19 10.97 50.63 196.10
6 0.70 0.52 0.53 0.66 12.60 52.32 213.81
7 0.81 0.86 0.87 0.97 13.62 52.95 220.47
8 0.67 0.44 0.46 0.58 12.37 52.17 212.27
9 0.76 0.72 0.73 0.84 13.19 52.68 217.65

10 0.05 -1.63 -1.48 -0.85 6.57 49.31 182.21
11 0.45 -0.12 -0.10 -0.09 10.71 50.82 198.07
12 0.16 -0.99 -0.92 -0.55 8.23 49.91 188.51
13 0.86 1.08 1.09 1.18 14.27 53.36 224.74
14 0.17 -0.97 -0.90 -0.53 8.29 49.93 188.78
15 0.63 0.32 0.34 0.48 12.03 51.96 210.12
16 0.44 -0.14 -0.11 -0.08 10.67 50.84 198.33
17 0.55 0.13 0.15 0.31 11.45 51.62 206.47
18 0.31 -0.50 -0.46 -0.21 9.62 50.58 195.59
19 0.02 -2.00 -1.72 -0.93 5.85 49.13 180.41
20 0.07 -1.44 -1.32 -0.78 7.04 49.45 183.68
21 0.80 0.84 0.86 0.96 13.57 52.92 220.14
22 0.79 0.80 0.81 0.92 13.44 52.83 219.26
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23 0.45 -0.13 -0.10 -0.09 10.70 50.82 198.15
24 0.78 0.76 0.78 0.88 13.33 52.77 218.55
25 0.89 1.21 1.23 1.31 14.68 53.62 227.47
26 0.09 -1.34 -1.24 -0.73 7.29 49.53 184.57
27 0.82 0.90 0.92 1.02 13.75 53.03 221.32
28 0.95 1.62 1.63 1.70 15.88 54.39 235.60
29 0.04 -1.76 -1.57 -0.88 6.30 49.24 181.47
30 0.45 -0.14 -0.11 -0.08 10.67 50.84 198.30
31 0.22 -0.78 -0.73 -0.41 8.82 50.18 191.34
32 0.69 0.51 0.53 0.65 12.58 52.30 213.64
33 0.34 -0.40 -0.37 -0.13 9.90 50.73 197.20
34 0.12 -1.18 -1.09 -0.65 7.72 49.69 186.25
35 0.31 -0.49 -0.45 -0.20 9.64 50.59 195.73
36 0.74 0.66 0.67 0.78 13.01 52.57 216.47
37 0.50 0.00 -0.02 -0.20 10.93 50.61 195.86
38 0.45 -0.13 -0.10 -0.09 10.70 50.82 198.10
39 0.83 0.94 0.95 1.05 13.86 53.10 222.03
40 0.44 -0.14 -0.11 -0.08 10.66 50.85 198.38
41 0.47 -0.07 -0.05 -0.13 10.86 50.73 197.18
42 0.07 -1.45 -1.33 -0.78 7.02 49.44 183.62
43 0.10 -1.25 -1.16 -0.69 7.53 49.62 185.51
44 0.57 0.17 0.19 0.35 11.58 51.70 207.31
45 0.44 -0.15 -0.12 -0.07 10.64 50.86 198.50
46 0.53 0.08 0.10 0.26 11.30 51.53 205.52
47 0.36 -0.35 -0.31 -0.09 10.06 50.82 198.09
48 0.06 -1.50 -1.37 -0.80 6.89 49.40 183.18
49 0.20 -0.84 -0.78 -0.45 8.65 50.09 190.48
50 0.84 1.00 1.02 1.11 14.05 53.22 223.30

*µ: Original mean (before truncation), *σ: Original standard deviation (before truncation).

As appears in the previous table (Table 1), we can gener-
ate random variates from left-sided truncated Gaussian 
distribution with any *µ and *σ by using the transformation 
formula, z=(U(R)-*μ)/*σ.  Further, there are 1-2 values in 
some columns lower than ZL (or XL) corresponding to 
R values near R=0. This is due to the slight deviation 
curve that goes to the negative side at near R=0. Since 
we already evaluated the accuracy of the approximation 
and the inverse mathematically, it is not valuable to fit 
the variates and see the fitness, especially that the num-
ber of the variates generated is not too much. With the 
simulation process, thousands of variables are usually 
generated, and the number of generated variates is not 
an issue. 

CONCLUSION 

Ploya’s approximation of standard Gaussian distribution 
CDF was used to derive a left-sided truncated Gaussian 
distribution CDF approximation. The absolute maximum 
deviation of  Ploya’s approximation is less than 0.003. 

Polya’s approximation accuracy was discussed and 
compared with the well-known Cadwell’s approximation. 
Then his approximation is used to derive left-sided trun-
cated gausian distribution. The inverse of Polya’s ap-
proximation was easily derived, as explained previously 
and our introduced approximation was also derived. Our 
approximation has been proven to be accurate with low-
er than 0.007 maximum deviations from the real for the 
whole region [ZL:∞] for any ZL E [-∞:0]. Two real case 
are provided to explain the model applicability. Finally, 
random variates of left-sided truncated Gaussian distri-
bution are generated used out model. We recommend 
practitioners/engineers use this approximation due to 
the high simplicity and high level of accuracy besides the 
feasibility of using spreadsheets.

FUTURE WORK 

It was possible to study more detailed features of the 
present approximation. Furthermore, a more accurate 
approximation of left-sided truncation  guasian distribu-
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tion based on another guasian distribution approximation 
can be used to derive and generate random variables.  
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